
CS100 Fall 2014

Name _________________________________

CPADS Programming Activity II – Due 10/24
“Super Turtle!”

The goal of this section of the course is to introduce fundamental programming constructs using a
simple scripting language, Python. This approach will allow us to focus on programming rather than
syntax, i.e. formulating a procedural solution. To accomplish this task we may write both console
programs that process text files, as well as turtle graphics programs where we draw graphics in an
“Etch-a-Sketch” fashion.

1. Slow and Steady.

We will now write our first substantial Python program. For this program we will use a turtle graphics
library known as Swampy (http://www.greenteapress.com/thinkpython/swampy/). In the turtle graphics
world, we move a virtual turtle around the screen using only a few simple commands (hence planning
will be important). Additionally, the turtle can pick up or put down the pen. The commands are:

 fd(t, length) – moves turtle t forward length units
 bk(t, length) – moves turtle t backward length units
 lt(t, angle) – turns turtle t angle degrees to the left
 rt(t, angle) – turns turtle t angle degrees to the right
 pd(t) – starts drawing for turtle t (pen down)
 pu(t) – stops drawing for turtle t (pen up)

• Open PyCharm (Menu->Programming->PyCharm).

• In PyCharm, create a new project by selecting File->New Project…
When the Create New Dialog windows pops up:
◦ name your project Activity2
◦ set the location for Activity2 to be the same CS100 directory you created during Activity 1
◦ ensure that the Interpreter is set to Python 3.4.0
◦ click ok to create the new project

• Create a new Python file in your project
◦ Right-click on the Activity2 in the left hand side of your IDE and select New->Python File
◦ Name your new Python file rightang.py
◦ Your new file should open up in the editor panel of your IDE

CS100 Fall 2014

Name _________________________________

• Type the code below into your rightang.py file. NOTE: programming languages are almost
always case-sensitive. Be careful and type the code EXACTLY as it is shown below.

 # Load TurtleWorld functions
 from TurtleWorld import *

 def main():

Create TurtleWorld object
 world = TurtleWorld()

Create Turtle object
turtle = Turtle()

 # Draw graphics
 fd(turtle, 100)
 rt(turtle, 90)
 fd(turtle, 100)
 rt(turtle, 90)

 # Press enter to exit
 key = input(‘Press enter to exit’)
 world.destroy()

main()

• Save your rightang.py program

• Run your program by selecting Run->Run… and then selecting rightang in the pop-up box
that appears.

Sketch the output produced in the TurtleWorld graphics window. When done, click in the
console window of PyCharm and press Enter to close the TurtleWorld window.

To understand a bit more about this program, from TurtleWorld import * tells Python to import the
entire TurtleWorld library which is needed for this program. The next line world = TurtleWorld() is
used to create a turtle graphics window. The following line turtle = Turtle() creates a new turtle
and assigns it to the variable turtle. The next four lines then issue movement commands to turtle to
perform the drawing. Finally, the last two lines simply keeps the turtle graphics window open until we
press enter (in the IDLE window) to close it. Lines that begin with the # character are comments and
can be used to document your program. Commented lines are not executed and can contain anything.

CS100 Fall 2014

Name _________________________________

2. It's not magic.

The program you entered above has several magic numbers that will make the program both difficult to
read and maintain. In this part, you’ll make a few changes to your previous program to remove the
magic numbers.

• Make a copy of your rightang.py program
o Right-click on the rightang.py file in the left panel and select Copy
o Right-click on the rightang.py file again and select Paste
o In the Copy dialog box that appears, give the new file the name square.py
o Click ok
o You will now have two files in your Activity2 project. Double-click on the square.py

file to ensure that you’re editing you new file for the remainder of this part.

• Modify square.py to remove the magic numbers and instead store those values in variables
with descriptive names length and angle.

o Create two assignment statements before the fd and rt drawing commands. The first
assignment statement should assign a value to a variable named length. The second
assignment statement should assign a value to a variable named angle. Note that these
variables MUST be declared and assigned a value BEFORE they can be used.

o Add a comment above your newly created variables to document their intended use

• Replace the magic numbers in the fd and rt drawing commands with the appropriate variables.
Note that you can use each variable more than once.

• Add four more drawing commands to have the turtle draw a square and end up back where it

started and facing right.

• Save your square.py program

• Run your program by selecting Run->Run… and then selecting square in the pop-up box that
appears. Show the instructor your program executing.

CS100 Fall 2014

Name _________________________________

3. If it’s broke, fix it.

• Create a new Python file in your project
◦ Right-click on the Activity2 in the left hand side of your IDE and select New->Python File
◦ Name your new Python file triangle.py
◦ Your new file should open up in the editor panel of your IDE

• Type the code below into your triangle.py file. NOTE: programming languages are almost

always case-sensitive. Be careful and type the code EXACTLY as it is shown below.

 # Load TurtleWorld functions
 from TurtleWorld import *

 def main():
 a = TurtleWorld()

x = Turtle()
 t = 100
 fd(x, t)
 z = 60
 rt(x, z)
 fd(x, z)
 z = 100
 rt(x, z)
 fd(x, t)
 rt(x, z)

 # Press enter to exit
 key = input(‘Press enter to exit’)
 world.destroy()

main()

The program you entered above is intended to draw an equilateral triangle. What output does the
program produce?

What good programming practices were not followed and what corrections need to be made to make
the code more readable and produce the proper output?

Make these changes and show your instructor the corrected version.

CS100 Fall 2014

Name _________________________________

4. It's a bird, it's a plane, it's super turtle!

Now it is time to make things a bit more complicated. You should do some planning with pencil and
paper before you start typing any code.

• Create a new Python file in your project
◦ Right-click on the Activity2 in the left hand side of your IDE and select New->Python File
◦ Name your new Python file superturtle.py
◦ Your new file should open up in the editor panel of your IDE

• Using your program from Part #3 as a template, write a program to produce output shown

below. The requirements are as follows:
◦ Define a variable named length that represents the length of the side of an equilateral

triangle. A good starting value for length is 100.
◦ The figure must scale based on the single length variable.
▪ You will probably want to create additional variables that are computed based on

length. For example, you might create a second variable called slength that is computed
as one-fifth the size of length.

◦ The figure should be centered in the screen with the S roughly centered in the triangle.
Hint: The turtle starts in the center of the screen so think about how to reposition the
starting point before drawing the triangle.

◦ Your program should not have any magic numbers and should be commented appropriately.

• Save your superturtle.py program

• Run your program by selecting Run->Run… and then selecting superturtle in the pop-up
box that appears.

CS100 Fall 2014

Name _________________________________

• Once your program output looks like the figure shown above, try changing the value of length
from 100 to 200. Run your program again. Does your output look correct? If not, you will need
to fix how you’re scaling the various features of the Super Turtle logo.

• When you’re ready to submit your program, print out and STAPLE a copy of your
superturtle.py file to this activity.

• Submit your source file through Marmoset.
◦ Open a web browser (e.g. Google Chrome) and enter the following URL (continue to the

website if it brings up a certificate error page)

https://cs.ycp.edu/marmoset/

◦ Enter your login information which you should have received in an e-mail (you probably

should change your password to match your YCP account)
◦ Select CS100: Computer Science Practice and Design Studio
◦ Select the submit link under web submission for program01
◦ Click Choose File… , navigate to your program directory and select your superturtle.py

file (do not worry about the instructions for jar and zip files).
◦ Click Submit project!

