
CS100 Fall 2014

Name _________________________________

CPADS Programming Activity IV – Due 11/10
“Smell the Flower!”

Now that we have some basic experience with modularizing our programs using functions, we are
ready to introduce another fundamental programming concept – iteration, i.e. repeatedly performing a
set of instructions. In this activity we will investigate fixed iteration, i.e. doing something a
predetermined number of times. For this type of iteration, the loop is executed a set number of times
typically through a range of values tracked with a loop counter.

Almost every programming language has looping structures to perform fixed iteration. Python (similar
to C/Java) uses the for construct which has the following syntax

for loop_counter in range(num_loops):
statements

where loop_counter is a variable that will cycle through the values from 0 to num_loops-1 (for a total
of num_loops iterations). As with functions, the body of the loop is indicated by indentation, otherwise
any valid Python code may be used within the loop.

1. “Poly wants a cracker!”

Create a new project named Activity4, and a new Python file named poly.py. Enter the following
skeleton code as a starting point:

 # Load TurtleWorld functions
 from TurtleWorld import *

 # Polygon function
 def draw_polygon(t, length, n):
 ang = 360.0/n
 for i in range (n):
 fd(t,length)
 rt(t,ang)

 # Main program function
 def main():
 # Create TurtleWorld object
 world = TurtleWorld()

Create turtle object
turtle = Turtle()

Define polygon variables
num_sides = int(input(‘Enter the number of sides ’))
side_length = int(input(‘Enter the length of each side ’))

 # Draw graphics
 draw_polygon(turtle, side_length, num_sides)

 # Press enter to exit
key = input(‘Press enter to exit’)
world.destroy()

#Call main program
main()

CS100 Fall 2014

Name _________________________________

• Sketch the output of the program for 6 sides with length 100.

• What happens if different values are entered, e.g. 8 sides of length 50?

CS100 Fall 2014

Name _________________________________

2. “Help me Noah!”

The Turtle graphics package constructs objects using only line segments. To approximate curves (for
things like circles), we can use small line segments drawn with a slight angular change between each
segment using iteration). Arcs (and circles) are usually specified by a radius r and an angle theta.
Thus, we can create an arc similarly to the draw_polygon()function by first computing the arc length
arc_len (fractional circumference of a circle) which is given by the formula

arc_ len = (2πr)(theta / 360)

If each segment has length seg_len, the number of segments num_seg (as an integer) is given by

num_ seg = int(arc_ len / seg_ len)

Finally the angular change between each segment dang for a total angle theta is

dang = theta / num_ seg

Create a new Python file named arc.py and enter the following skeleton code as a starting point:

 # Load TurtleWorld functions
 from TurtleWorld import *
 import math

 # TODO: Arc function
 def draw_arc(t,r,theta,seg_len):
 pd(t)

 # Main program function
 def main():
 # TurtleWorld objects
 world = TurtleWorld()
 turtle = Turtle()

turtle.delay = 0.01

Arc variables
radius = int(input(‘Enter radius ’))
angle = int(input(‘Enter angle ’))
line_len = int(input(‘Enter segment length ’))

 # Draw graphics
 draw_arc(turtle,radius,angle,line_len)

 # Press enter to exit
 key = input(‘Press enter to exit’)
 world.destroy()

 # Call main program
 main()

CS100 Fall 2014

Name _________________________________

• Complete the function named draw_arc() that takes four parameters – t for the drawing turtle,
r for the arc radius, theta for the arc angle, and seg_len for the length of each segment. In the
function definition, use the formulas above to compute the number of segments needed and the
angle to turn between each segment. Then add a loop (similar to the draw_polygon() function
from part 1) to construct the arc. NOTE: You should only be using the parameters and any
locally created variables in this function!

• Test your function using the values 50 for the radius, 60 for the angle, and 4 for the segment

length. Show your output to the instructor.

• Test your function again using 360 for the angle. You should see a COMPLETE circle.

3. “Smell the Flowers!”

We will now use the draw_arc() function (since you did show it to your instructor?) to make “spiro-
graph” type pictures. Using the skeleton code below:

 # Load TurtleWorld functions
 from TurtleWorld import *
 import math

 # TODO: Arc function
 def draw_arc(t,r,theta,seg_len):
 pd(t)

 # TODO: Petal function

 # TODO: Flower function

 # Main program function
 def main():
 # Create TurtleWorld objects
 world = TurtleWorld()

turtle = Turtle()
turtle.delay = 0.01

Flower variables
num_petals = int(input(‘Enter the number of petals ’))

 # Draw graphics
 # draw_petal(turtle, 100, 90, 4)
 # draw_flower(turtle, num_petals)

 # Press enter to exit
 key = input(‘Press enter to exit’)
 world.destroy()

 # Call main program
 main()

CS100 Fall 2014

Name _________________________________

• Create a new Python file named flower.py and enter the above skeleton code as a starting
point. Now, copy your draw_arc() function from part 2 into the new file (note this is code
reuse!)

• Write a function called draw_petal() (place it after the draw_arc() function) that takes four
parameters – t for the drawing turtle, r for the arc radius, theta for the arc angle, and seg_len
for the length of each segment. The function should draw a single petal at the current turtle
position. The turtle should end up at exactly the same position and orientation as it started.
TEST your draw_petal()function by uncommenting the call in main(). Try changing the
third argument (arc angle) to 45 -- it should now draw a thinner petal than before.

• Write a function called draw_flower() (place it after the draw_petal() function) that takes
two parameters – a turtle t, and the number of petals petals and constructs a figure similar to
below. Note: the width of the petals should scale with the number of petals such that the flower
remains approximately the same size. Consider using the draw_petal() function in a loop
(think about how many petals you need to draw and the angular adjustment between each one)
to construct the figure.

• When you’re ready to submit your program:
◦ Print out and STAPLE a copy of your flower.py file to this activity.
◦ Submit your source file through Marmoset (https://cs.ycp.edu/marmoset/).
◦ Enter your login information which you should have received in an e-mail (you

probably should change your password to match your YCP account)
◦ Select CS100: Computer Science Practice and Design Studio
◦ Select the submit link under web submission for program03
◦ Click Choose File… , navigate to your program directory and select your flower.py

file (do not worry about the instructions for jar and zip files).
• Click Submit project!

HINTS:

• Think about how to draw a single petal. In particular, if the turtle begins facing right it will end
up at a corner of the regular polygon (refer to the first activity in this lab) with the same number
of sides as the flower has petals.

• Then consider how far the turtle has to turn to draw the same arc to get back to the center.

• Finally think about how far the turtle must then turn to draw the next petal, and repeat the
process via a loop.

• Adjust the arc length, i.e. size of the flower, based on the number of petals. Note that the larger

the angle of the arc, the larger the arc (since we are using a fixed segment length). Consider
how to adjust the radius of the arc to compensate.

CS100 Fall 2014

Name _________________________________

