Name \qquad

CPADS Reading Activity I

The goal of this section of the course is to introduce fundamental programming constructs using a simple scripting language, Python. This approach will allow us to focus on programming rather than syntax, i.e. formulating a procedural solution. To accomplish this task we may write both console programs that process text files, as well as turtle graphics programs where we draw graphics in an "Etch-a-Sketch" fashion.

1. Let's Draw

We will now look at our first substantial Python program. For this program we will use a turtle graphics library known as Swampy (http://www.greenteapress.com/thinkpython/swampy/). In the turtle graphics world, we move a virtual turtle around the screen using only a few simple commands (hence planning will be important). Additionally, the turtle can pick $u p$ or put down the pen. The commands are:

```
fd(t, length) - moves turtle t forward length units
bk (t, length) - moves turtle t backward length units
lt (t, angle) - turns turtle t angle degrees to the left
rt(t, angle) - turns turtle t angle degrees to the right
pd(t) - starts drawing for turtle t (pen down)
pu ( }t\mathrm{ ) - stops drawing for turtle t (pen up)
```

```
Program #1
# Create Turtle object
turtle = Turtle()
# Draw graphics
fd(turtle, 100)
rt(turtle, 90)
fd(turtle, 100)
rt(turtle, 90)
```

Assuming the turtle begins in the center of the screen, sketch what output you think the above program will produce?

Name \qquad

Program \#2

```
# Create Turtle object
turtle = Turtle()
length = 100
angle = 60
length2 = length/2
angle2 = angle*2
# Draw graphics
fd(turtle, length)
rt(turtle, angle)
fd(turtle, length2)
lt(turtle, angle2)
length2 = length2 * 0.5
fd(turtle, length2)
rt(turtle, angle + 30)
fd(turtle, (length2+55)/2)
```

Assuming the turtle begins in the center of the screen, sketch what output you think the above program will produce? Beside each line containing a variable assignment, write the value that is assigned to the variable.

