Name \qquad

CPADS Reading Activity III

Program \#1

```
def main():
    count = 5
    for num in range(count):
            print(num)
            print(count)
main()
```

In English, describe what the program above does. What output you think the above program will produce? Verify your prediction by typing the code into PyCharm and running the program.

Program \#2

```
def main():
    total = 0
    count = 4
    for num in range(count):
        total = total * num
    print(total)
main()
```

In English, describe what the program above does. What output you think the above program will produce? Verify your prediction by typing the code into PyCharm and running the program.

Name \qquad

Program \#3

```
def doSomething(val):
    total = 0
    for i in range(val):
            total = total + i
    return total
def main():
    # Define variables
    num1 = 10
    num2 = 4
    num3 = 0
    # Do computation
    result1 = doSomething(num1)
    print(result1)
    # Do another computation
    for j in range(num2):
        num3 = doSomething(j)
    # Print output
    print(num3)
main()
```

In English, describe what the program above does. What value does the print statement output? Verify your prediction by typing the code into PyCharm and running the program.

Name \qquad

Sketch what output you think the following program will produce. For reference, the turtle graphics library functions are defined below.

```
fd(t, length) - moves turtle \(t\) forward length units
\(\mathrm{bk}(t\), length) - moves turtle \(t\) backward length units
lt ( \(t\), angle) - turns turtle \(t\) angle degrees to the left
\(r t(t\), angle) - turns turtle \(t\) angle degrees to the right
\(\mathrm{pd}(t)\) - starts drawing for turtle \(t\) (pen down)
\(\mathrm{pu}(t)\) - stops drawing for turtle \(t\) (pen up)
```


Program \#4

```
    from TurtleWorld import *
```

 def doSomething(t,len, val):
 ang \(=180-180 /\) val
 pd (\(t\))
 for i in range(val):
 fd(t, len)
 rt(t, ang)
 fd(t, len)
 def main():
 \# Create Turtleworld
 world = TurtleWorld()
 turtle = Turtle()
 turtle.delay \(=0.01\)
 \# Define variables
 size \(=25\)
 \# Draw graphics
 for \(i\) in range(3):
 doSomething(turtle,size,2*i+3)
 pu (turtle)
 fd(turtle,size*3)
 \# Press enter to exit
 key = input('Press enter to exit')
 world.destroy()
 main()
 Verify your prediction by typing the code into PyCharm and running the program.

