CS100: CPADS

Wireless Networks

David Babcock / James Moscola Department of Physical Sciences York College of Pennsylvania

CS100: Computer Science Practice and Design Studio

Wireless Networks

Allow devices to connect to a network wirelessly

- Great for mobile devices
- Great for connecting a device to a network when it is not conveniently located nearby a wired switch/port

Requirements

- Wireless Access Point
- Wireless adapter in computer that you want to connect to wireless network

Wireless Network Adapters

- Most likely included in EVERY mobile computer on the market today
- Most desktop computers do NOT come with wireless network adapters
 - Adding a wireless adapter is cheap and easy
 - Two possible options

Internal PCI/PCIe Wireless Adapter

CS100: Computer Science Practice and Design Studio

Wireless Access Points

Allow wireless devices to connect to network

 One side physically plugs into wired network, other side sends/ receives radio signals

Often integrated into a single device that also contains . . .

- a router
- a switch
- a firewall
- sometimes a print server
- sometimes even a cable modem

Wireless Access Points

When setting wireless router, location is key

- Desirable to locate the AP nearby wireless devices
- Performance (i.e. speed) decreases as distance from AP increases

Setup requires that you name your network with an SSID

- This is the name that others see when they are looking for wireless networks
- It is possible to hide this SSID for extra security

Wireless Access Points

Additional security measures

- Encryption (WEP, WPA, WPA2)
 - Add an encryption password to your network to prevent others from accessing your network
 - Encrypting packets also prevents others from snatching your data from thin air
- MAC Filtering
 - Set up your AP such that only devices with specific MAC addresses can connect

Wireless Standards

Multiple wireless standards exist, and will continue to evolve as technology improves

- Many different implementation standards for 802.11n and 802.11ac
 - Vary number of antennae
 - More antennae => More simultaneous data streams => More Speed
- Most 802.11n and 802.11ac computers only support 2-3 simultaneous data streams
- Most 802.11n handheld devices only support a single data stream

	Frequency (GHz)	Max Data Streams	Avg. Data Rate Per Stream (Mb/s)	Max Data Rate Per Stream (Mb/s)	Max Agg. Data (Mb/s)	Range (ft)
802.11a	5	1	23	54	54	25 - 75
802.11b	2.4	1	5.9	11	11	100 - 150
802.11g	2.4	1	22	54	54	100 - 150
802.11n	2.4 / 5	4	74	150	600	~230
802.11ac	5	8	??	866.7	6770	115

CS100: Computer Science Practice and Design Studio