
CS100: Computer Science Practice and Design Studio	 	 	 	 	 	 	 	 © James Moscola

College Catalog
2009–2011

!"#$%&'())*+,-.)/.&0123454670
8.9:;*&<:(#.="#>&1015?26511??
@A9/**/")*&<B!&C(>&1015?2D50633

05?3352775?30?
EEEF+C:F(A;

!""#$%%&'$#()*$&+$,-$%.$"

'GHI<GJHK&L<MNK
'GONJHK&P@JJHG
MFIF&'<IJ@QH&'@OK

!<GR%&'@
'HGPOJ&N<F&012

Y
O

R
K

 C
O

LLEG
E O

F PEN
N

S
Y

LV
A

N
IA

 C
O

LLEG
E C

A
TA

LO
G

 2009–2011

!""#$%&'()*+,--.../ 012$1$"..."34#3$4.56

College Catalog
2009–2011

!"#$%&'())*+,-.)/.&0123454670
8.9:;*&<:(#.="#>&1015?26511??
@A9/**/")*&<B!&C(>&1015?2D50633

05?3352775?30?
EEEF+C:F(A;

!""#$%%&'$#()*$&+$,-$%.$"

'GHI<GJHK&L<MNK
'GONJHK&P@JJHG
MFIF&'<IJ@QH&'@OK

!<GR%&'@
'HGPOJ&N<F&012

Y
O

R
K

 C
O

LLEG
E O

F PEN
N

S
Y

LV
A

N
IA

 C
O

LLEG
E C

A
TA

LO
G

 2009–2011

!""#$%&'()*+,--.../ 012$1$"..."34#3$4.56

College Catalog
2009–2011

!"#$%&'())*+,-.)/.&0123454670
8.9:;*&<:(#.="#>&1015?26511??
@A9/**/")*&<B!&C(>&1015?2D50633

05?3352775?30?
EEEF+C:F(A;

!""#$%%&'$#()*$&+$,-$%.$"

'GHI<GJHK&L<MNK
'GONJHK&P@JJHG
MFIF&'<IJ@QH&'@OK

!<GR%&'@
'HGPOJ&N<F&012

Y
O

R
K

 C
O

LLEG
E O

F PEN
N

S
Y

LV
A

N
IA

 C
O

LLEG
E C

ATA
LO

G
 2009–2011

!""#$%&'()*+,--.../ 012$1$"..."34#3$4.56

David Babcock / James Moscola

Department of Physical Sciences

York College of Pennsylvania

CS100: CPADS
Decisions

CS100: Computer Science Practice and Design Studio

Decisions

• Just like a human, programs need to make decisions
- Should turtle turn left or right?

- Should this piece of code execute?

- Should a different piece of code execute?

- Which piece of code should execute?

• Most programs have multiple branches of  
execution
- Can produce different output based  

on the decisions made while the program  
was run

2

Outcome #1

Outcome #2

Outcome #3

Outcome #4

Outcome #5

Outcome #6

Outcome #7

CS100: Computer Science Practice and Design Studio

Decisions

• To determine which branch of code should be executed requires
that a decision be made
- Decisions are based on boolean expressions

- The result of a boolean expression is either  

True or False

!

• In Python . . .
- A value of 0 is considered False

- Any other value is considered True 

(even negative numbers)

3

Outcome #1

Outcome #2

Outcome #3

Outcome #4

Outcome #5

Outcome #6

Outcome #7

?

?

?

?

?

CS100: Computer Science Practice and Design Studio

Comparison Operators

• Boolean expressions can consist of comparison operators and logical
operators (you have already seen arithmetic operators such as +, -, *, etc.)

- Will always simplify to either True or False

!

• Comparison Operators compare values and return True / False:
- Equality	 	 	 	 ==	 	 x == y	 	 Is x equivalent to y?

- Inequality	 	 	 	 !=	 	 x != y	 	 Is x not equivalent to y?

- Greater than	 	 	 >	 	 x > y	 	 Is x greater than y?

- Less than	 	 	 	 <	 	 x < y	 	 Is x less than y?

- Greater Than/Equal		 >=	 	 x >= y	 	 Is x greater than or equal to y?

- Less Than/Equal	 	 <=	 	 x <= y	 	 Is x less than or equal to y?

4

CS100: Computer Science Practice and Design Studio

Logical Operators

• Logical operators combine multiple boolean (True / False) values into a single
boolean value

- AND	 	 and	 	 x and y	 	 True if BOTH x AND y are true

- OR		 	 or	 	 x or y	 	 True if EITHER x OR y are true

- NOT	 	 not	 	 not x	 	 True if x is False (negates a boolean expression) 
 
 
 
 
 
 
 
 
 
 
 

5

(True or False)	 ==>		 True 
(False or True)	 ==>		 True 
(True or True)	 ==>		 True 
(False or False)	==>		 False  
 
(True and True)	 ==>		 True 
(True and False)	==>		 False 
 
(not False)	 	 ==>		 True 
(not True)	 	 ==>		 False

Examples:

(not (True and False))	 	 ==>		 ? 
(not (False)) 	 	 	 	 ==>		 True

 
((True or False) and True)		 ==>		 ? 
((True) and True)	 	 	 ==>		 True

More Examples:

CS100: Computer Science Practice and Design Studio

Combining Comparison and Logical Operators

• Comparison and Logical Operators can be combined to create
more complex boolean expressions (“questions”)

6

 x = 5
 y = 6
!
 ((x <= 6) and (y == 6))
!

!
((5 <= 6) and (6 == 6))
((True) and (True))
(True)

Example #1:
 x = 5
 y = 6
!
 ((x <= 6) and (x+2 == y))
!

!
((5 <= 6) and (5+2 == 6))
((5 <= 6) and (7 == 6))
((True) and (False))
(False)

Example #2:

CS100: Computer Science Practice and Design Studio

Conditional Expressions

• Conditional expressions are used to make a decision and control
the flow of a program

• A conditional expression in Python starts with the keyword ‘if’ and
can take multiple different forms

7

 if condition:
 STATEMENTS to executes if condition is true

if-statement

 if condition:
 STATEMENTS to executes if condition is true
 else:
 STATEMENTS to executes if condition is false

if-else-statement

Executes one or the
other, but NOT BOTH

CS100: Computer Science Practice and Design Studio

Conditional Expressions

8

 if condition:
 STATEMENTS to executes if condition is true
 elif condition2:
 STATEMENTS to executes if condition2 is true

if-elif-statement

 if condition:
 STATEMENTS to executes if condition is true
 elif condition2:
 STATEMENTS to executes if condition2 is true
 elif condition3:
 STATEMENTS to executes if condition3 is true
 ...

if-elif-statement

Executes one or the
other, but NOT BOTH

CS100: Computer Science Practice and Design Studio

Conditional Expressions

9

 if condition:
 STATEMENTS to executes if condition is true
 elif condition2:
 STATEMENTS to executes if condition2 is true
 else:
 STATEMENTS to executes if condition and condition2 are BOTH false

if-elif-else-statement

CS100: Computer Science Practice and Design Studio

Examples

10

 if x<=21:
 print 'Good'
 else:
 print 'Bad'

Example #1:

 if x > y:
 print 'x is greater than y'
 if x < y:
 print 'x is less than y'
 if x==y:
 print 'x is equal to y'

Example #2a:
 if x > y:
 print 'x is greater than y'
 elif x < y:
 print 'x is less than y'
 elif x == y:
 print 'x is equal to y'
 else:
 print 'Error'

Example #2b:

CS100: Computer Science Practice and Design Studio

Conditional Iteration

• Previously discussed fixed iteration
- Repeating a block of code a fixed number of times (known before

loop starts executing)

• Don't always know how many time we want a loop to execute
- Conditional iteration combines decisions with loops

- Repeat a block of code until some condition is met

11

CS100: Computer Science Practice and Design Studio

Conditional Iteration

• “While condition is true, do this”

!

!

!

• IMPORTANT: Be sure to update at least one of the values in your
condition inside the while-loop

- If the condition is not altered inside the loop, then the loop will
NEVER terminate (i.e. infinite loop)

12

!
 while condition:
 STATEMENTS to executes while condition is true

while-loop

CS100: Computer Science Practice and Design Studio

Conditional Iteration Example

• The following will prompt a user for input, and continue to prompt a
user for input until the user enters a value that is greater than 0

!

!

!

!

• NOTE: The condition is dependent on the value of num, therefore
num MUST change insider the loop

13

 num = 0
!
 while num <= 0:
 var = raw_input("Enter a value greater than 0: ")
 num = int(var)

while-loop

CS100: Computer Science Practice and Design Studio

A More Interesting Example

• This examples asks for user input, but only allows the user 10 tries to get the
correct input. A message is printed at the end to indicate how many attempts
it took the user.

14

user_input = 0
num_attempts = 0
MAX_ATTEMPTS = 10
!
while ((user_input <= 0) and (num_attempts < MAX_ATTEMPTS)):
 var = raw_input("Enter a value greater than 0: ")
 user_input = int(var)
 num_attempts = num_attempts + 1
!
!
if (num_attempts == 1):
 print "User provided correct input on first try"
elif (num_attempts >= 10):
 print "User failed to provide correct input after 10 attempts"
else:
 print "User provided correct input on attempt # %i" % num_attempts

