CS 101, Spring 2013 — May 2nd — Exam 4

Note: Make sure your programs produce the output in exactly the format described, including
capitalization and punctuation. You may not receive credit for programs that produce incorrectly
formatted output.

Getting started: Start Cygwin Terminal and Notepad++ closing any open tabs in Notepad++.
(Note: Do not open ANY other programs.) Your instructor will give you the name of a zip file.
In Cygwin Terminal, run the following commands:

cd h:
mkdir -p CS101
cd CS101

curl -0 http://faculty.ycp.edu/ dhovemey/spring2013/cs101/assign/zipfile
unzip zipfile
cd CS101_Exam4

Substitute the name of the zip file for zipfile.

Editing code: Use Notepad++ to open the source file (e.g., questionl.cpp) referred to in the
question. Do not open any files other than the ones for the exam.

Compiling: To compile the program for Question 1, run the following command in Cygwin Ter-
minal:

make questionl.exe

Change the number as appropriate for the other questions (e.g., question2.exe).

Running: To run the program for Question 1, run the following command in Cygwin Terminal:
./questionl.exe

Change the number as appropriate for the other questions (e.g., question2.exe).

To submit: In Cygwin Terminal, run the command
make submit

Enter your Marmoset username and password when prompted.

Good luck!



Question 1. [15 points] In the program questioni.cpp, the struct Student data type represents
information about a student account:

struct Student {

int id; // student id
int num_credits; // how many credits student is registered for
int commuter; // 1 if student is a commuter, 0 if not

double amount_due; // amount due for tuition

};

For this question you should only add function calls in main. The function definitions for init_Student (),
which initializes the fields of a struct Student variable, and compute_Tuition(), which computes

the tuition amount, are provided and should NOT be modified. You will also not need to add or
modify any code for input or output.

(1) As indicated by the TODO comment in main, write a call to the init_Student() function so
that the variable called the_student is initialized with the user input values read by the provided
scanf statements. Once you do this, when you run the program it will echo back the input values
(except amount per credit) as follows (user input in bold):

ID: 9025555555

Number of credits: 15
Commuter (1=yes, O=no): 1
Amount per credit: 400.0
Initialization function called
id=9025555555

num_credits=15

commuter=1

amount_due=0.00

(2) As indicated by the TODO comment in main, write a call to the compute Tuition() function
passing the_student and the amount per credit user input value read by the provided scanf
statements. The provided function will compute the tuition and store it in the amount_due field of
the structure. Example using the previous example values (user input in bold):

ID: 9025555555

Number of credits: 15

Commuter (1=yes, O=no): 1
Amount per credit: 400.0
Initialization function called
id=9025555555

num_credits=15

commuter=1

Compute tuition function called
amount_due=6000.00



Question 2. [30 points| In the program question2.cpp, the struct Transcript data type
represents the number of credits earned and the course grade for some number of classes:

struct Transcript {
int num_classes; // how many classes were taken
int credits[MAX]; // mumber of credits for each class
double grades [MAX]; // grade for each class

35

Your task is to define a function called compute_GPA that takes a pointer to a struct Transcript
and returns the grade point average for that transcript. The grade point average is the sum of the
quality points for all classes, divided by the total number of credits taken. The number of quality
points for a single class is the number of credits times the grade earned.

The program’s main function declares a struct Transcript and prompts the user to enter the
number of classes and number of credits/grade for each class. Code is also provided to print out
the GPA computed from the entered transcript information.

You will need to:

e Add a prototype for the compute _GPA function
e Add a definition for the compute GPA function

e Add a call to the compute_GPA function to the main function, assigning the computed GPA
to the variable called gpa

Example session (user input in bold):

How many classes? 3
Credits: 3

Grade: 3.5

Credits: 4

Grade: 3.0

Credits: 3

Grade: 4.0
GPA=3.450000

The GPA is 3.45 because

(3-3.5) + (4-3.0) + (3 4.0)
3+4+3

=3.45

Do not change any code except as indicated by the TODO comments.

Make sure that your function is called compute GPA, and that it takes a pointer to a struct
Transcript as its only parameter.



Question 3. [20 points] In question3.cpp implement the function called find occurrences -
DO NOT MODIFY main.

Its prototype is
int find_occurrences(int arr[], int length, int val, int occur[]);

The function should scan through the elements of arr. Each time an array element equal to val
is found, it should place the index of that element in an element of occur. The index of the first
occurrence should be stored in occur [0], the index of the second occurrence should be stored in
occur[1], etc. The parameter length indicates the number of values stored in arr, and you can
assume that occur will have at least that many elements.

The total number of occurrences found should be returned as the return value of the function.

For example, if the arr array has the values {1, 2, 1, 3, 4, 1}, and val is 1, then the values {0, 2,
5} should be placed in the first three elements of occur, because those are the indices of the first
three occurrences of the value 1 in arr. The function would return 3 in this case, since there were
3 occurrences of 1 in arr.

In your code to implement the find occurrences function, first print out the values of the array
containg the values separated by a single space, then each time an occurrence is found, print a
single-line message of the form:

Occurrence at N

where N is the index of the occurrence.

Example run (user input in bold):

How many values? 6

Enter values: 121341
Search for7 1

121341

Occurrence at O

Occurrence at 2

Occurrence at 5

Found 3 occurrence(s): 0 2 5

Hints:

e Use a counter variable to keep track of how many occurrences have been found; this will be
useful in deciding where in occur to store the index of each occurrence



Question 4. [20 points| In the program question4.cpp, the struct Point data type represents
a point with integer x/y coordinates, and the struct Rect data type represents a rectangle with
specified minimum x/y values, a width, and a height:

struct Point { struct Rect {
int x, y; struct Point minxy; // minimum x/y coordinates
}; int width; // width of the rectangle
int height; // height of the rectangle
};

The count_inside function’s prototype is
int count_inside(struct Point *p, struct Rect rectlist[], int nrects);

Given a pointer to a struct Point and an array of struct Rect elements, the function returns
a count of how many of the rectangles the point was inside. The nrects parameter specifies how
many elements the rectlist array has.

A point is considered to be inside of a rectangle if xpmin < = < Tmax and Ymin < Y < Ymax, Where
x and y are the coordinates of the point, Ty, and ymin are the minimum x and y coordinates of
the rectangle, and Tpax and ymax are the maximum x and y coordinates of the rectangle. The
values Zyax and Ymax can be found by adding the rectangle’s width and height (respectively) to a
its minimum x and y coordinates.

Each time the count_inside function determines that a point is inside a rectangle, it should print
a message on a single line reading Point is inside rectangle N, where NV is the index of the
rectangle in the rectlist array.

A main function - DO NOT MODIFY - is provided to read in the coordinates of a point and a
series of rectangles, call the count_inside function, and print out how many rectangles the point
was inside. Example session (user input in bold):

Point x/y: 10 10
Number of rects: 3

Min x/y: 00
Width/height: 20 20
Min x/y: 7 8

Width/height: 6 4

Min x/y: 11 5

Width/height: 20 10

Point is inside rectangle 0O
Point is inside rectangle 1
Point is inside 2 rectangles

Important: Do not modify the program except to add code to the body of the count_inside
function.



Question 5. [15 points] Write the prototype and definition for a function called overlap that
takes four parameters: two struct Circle parameters, one double pointer parameter for the
distance between the centers, and one double pointer parameter for the sum of the radii.

The function should return a bool value, indicating whether or not the circles overlap (true if they
do, false if they do not). It should also store the distance between the centers and the sum of the
radii in the third and fourth parameter pointer variables.

Two circles overlap if the distance between their centers is less than the sum of their radii. The
distance between two points (x1,y1) and (22, y2) is given by

\/(562 —z1)2 4+ (y2 — y1)?

The struct Point structure contains two double fields x and y.

The struct Circle structure contains a struct Point field c representing the center location and
a double field r representing the radius of the circle.

The main function - DO NOT MODIFY - reads the two circles’ values as input, stores them
in the structs, calls the overlap function, and then prints the result of the overlap check. Do not
change any of the code in main.

Example 1 (user input in bold):

x1/y1/r1: 123
x2/y2/r2: 43 4
3.162 7.000 overlap

Another example (user input in bold):

x1/y1/r1: -2 3 2
x2/y2/r2: 6 -4 1.5
10.630 3.500 non-overlap

Hints:

e Note that the first two parameters of overlap should have the data type struct Circle:
they do not take pointers

e Don’t forget to store the distance between the centers and the sum of the radii in the variables
pointed to by the third and fourth parameters, each of which is a pointer to a double variable



