
Problem 1. The loop executes N2 iterations, and the body of the loop executes
in constant time, so the overall running time is O(N2).

Problem 2. Each loop executes N iterations, and because there are two iden-
tical loops, CODE executes 2N times. Because CODE executes in constant time,
and because 2 times a constant is still a constant, the overall running time is
O(N).

Problem 3. The outer loop executes N iterations. However, the inner loop is
dependent on the outer loop, and each time it is reached, executes 0, 1, 2, 3, . . . , N−
1 iterations. The sum

N−1∑
i=0

i = 0 + 1 + 2 + . . . + (N − 1) =
N

2
(N − 1)

which (after dropping constant factors and low-order terms) is O(N2).

Problem 4. The loop executes a constant number of iterations, and the body
of the loop executes in constant time. A constant times a constant is a constant,
so the overall running time is O(1).

Problem 5. The inner loop is dependent on the outer loop, and executes i2

iterations each time it is reached, where i is the value of the outer loop’s loop
variable. So, the total number of times CODE is executed is

(N−1)2∑
i=0

= 0 + 1 + 4 + 9 + . . . + (N − 1)2 =
(N − 1)3

2
+

(N − 1)2

3
+

(N − 1)

6

which is O(N3). (We will prove this series sum when we cover proof by induc-
tion.)

Problem 6. The loop variable i starts at one and doubles on each loop iteration.
The final value of i is 2k, where k is the number of times the body of the loop
executes. The loop terminates when i ≥ N . The smallest value of k such that
2k ≥ N is k = dlog2 Ne. So, the overall running time is O(log2 N), which we
can simplify as O(logN) because all log functions are equivalent in big-O terms,
regardless of base.

Problem 7. The innermost loop executes N iterations and the body executes
in constant time, so the innermost loop is O(N). The middle loop executes
N times, and its body is O(N), so the middle loop is O(N2). The outer loop
executes N times, and its body is O(N2), so the total running time is O(N3).


