Problem 1. The loop executes N^{2} iterations, and the body of the loop executes in constant time, so the overall running time is $O\left(N^{2}\right)$.

Problem 2. Each loop executes N iterations, and because there are two identical loops, CODE executes $2 N$ times. Because CODE executes in constant time, and because 2 times a constant is still a constant, the overall running time is $O(N)$.

Problem 3. The outer loop executes N iterations. However, the inner loop is dependent on the outer loop, and each time it is reached, executes $0,1,2,3, \ldots, N-$ 1 iterations. The sum

$$
\sum_{i=0}^{N-1} i=0+1+2+\ldots+(N-1)=\frac{N}{2}(N-1)
$$

which (after dropping constant factors and low-order terms) is $O\left(N^{2}\right)$.

Problem 4. The loop executes a constant number of iterations, and the body of the loop executes in constant time. A constant times a constant is a constant, so the overall running time is $O(1)$.

Problem 5. The inner loop is dependent on the outer loop, and executes i^{2} iterations each time it is reached, where i is the value of the outer loop's loop variable. So, the total number of times CODE is executed is

$$
\sum_{i=0}^{(N-1)^{2}}=0+1+4+9+\ldots+(N-1)^{2}=\frac{(N-1)^{3}}{2}+\frac{(N-1)^{2}}{3}+\frac{(N-1)}{6}
$$

which is $O\left(N^{3}\right)$. (We will prove this series sum when we cover proof by induction.)

Problem 6. The loop variable i starts at one and doubles on each loop iteration. The final value of i is 2^{k}, where k is the number of times the body of the loop executes. The loop terminates when $i \geq N$. The smallest value of k such that $2^{k} \geq N$ is $k=\left\lceil\log _{2} N\right\rceil$. So, the overall running time is $O\left(\log _{2} N\right)$, which we can simplify as $O(\log N)$ because all \log functions are equivalent in big-O terms, regardless of base.

Problem 7. The innermost loop executes N iterations and the body executes in constant time, so the innermost loop is $O(N)$. The middle loop executes N times, and its body is $O(N)$, so the middle loop is $O\left(N^{2}\right)$. The outer loop executes N times, and its body is $O\left(N^{2}\right)$, so the total running time is $O\left(N^{3}\right)$.

