
CS 201, Fall 2013 — Dec 13th — Final Exam Name:

Note: In questions where you are asked about a static method, assume that the method is in a
class called Qn where n is the question number, e.g., Q1 for Question 1.

Question 1. [5 points] What output is printed by the following program (which begins on the
left and continues on the right)?

public class Q1 {

public static void f(int[] a) {

a = new int[1];

a[0] = 42;

}

public static void main(

String[] args) {

int[] b = new int[1];

b[0] = 17;

f(b);

System.out.printf("%d\n", b[0]);

}

}

Question 2. [5 points] Consider the following class and static method:

public class Animal {

public String sound() {

return "unknown";

}

}

public class Q2 {

public static void mystery(Animal a) {

System.out.println(a.sound());

}

}

Is it possible to predict with certainty what output will be printed by the mystery method when
it is called? If so, what is the output? If not, why not? Explain briefly.

Hint: Notice that the code does not contain any specific call to the mystery method.

Question 3. [10 points] Specify code that can be used at the points labeled Missing code 1

and Missing code 2 to allow the following program to compile and, when the main method in
the ColorItem is executed, produce the output Apples,3,red.

public class Item {

private String name;

private int quantity;

public Item(String n, int q) {

name = n;

quantity = q;

}

public String toString() {

return name + "," + quantity;

}

}

public class ColorItem extends Item {

private String color;

public ColorItem(String n,

int q, String c) {

Missing code 1

}

public String toString() {

Missing code 2

}

public static void main(

String[] args) {

ColorItem ci = new ColorItem(

"Apples", 3, "red");

System.out.println(ci.toString());

}

}

Question 4. [10 points] For each of the following code fragments (a)–(d), state a big-O upper
bound on the running time, with the problem size n being the value of the variable n. Briefly
explain each bound.

(a) int sum = 0;

for(int i = 0; i < n; i++) {

for(int j = 0; j < n*n; j++) {

sum++;

}

}

(b) int sum = 0;

for(int i = 0; i < n; i++) {

for(int j = 0; j < i; j++){

sum++;

}

}

(c) int sum = 0;

for(int i = 0; i < n; i++){

sum++;

}

for(int i = 0; i < n; i++){

sum++;

}

(d) int sum = 0;

for(int i = 0; i < n; i++){

for(int j = 0; j < i*i; j++){

sum++;

}

}

Question 5. [10 points]

(a) Consider the following program (which begins on the left and continues on the right):

public class Q5 {

public static void mystery(

ArrayList<Integer> a) {

int n = a.size() / 2;

while (n > 0) {

Integer x = a.remove(0);

a.add(x);

n--;

}

}

public static void main(

String[] args) {

ArrayList<Integer> nums =

new ArrayList<Integer>();

for (int i = 0; i < 6; i++) {

nums.add(i);

}

mystery(nums);

for (Integer val : nums) {

System.out.println(val);

}

}

}

What output is printed when the program is run?

(b) State a big-O upper bound on the running time of the mystery method in part (a). Let the
problem size N be the number of elements in the ArrayList passed as the parameter. Explain
briefly.

Question 6. [5 points] What output is printed by the following code (which begins on the left
and continues on the right)?

public class Q6 {

public static List<Integer>

mystery(List<Integer> a) {

TreeSet<Integer> s =

new TreeSet<Integer>();

s.addAll(a);

List<Integer> result =

new ArrayList<Integer>();

for (Integer val : s) {

result.add(val);

}

return result;

}

public static void main(

String[] args) {

List<Integer> x =

new ArrayList<Integer>();

x.add(9);

x.add(5);

x.add(8);

x.add(1);

x.add(3);

x.add(5);

List<Integer> y = mystery(x);

for (Integer val : y) {

System.out.println(val);

}

}

}

Question 7. [5 points] Briefly explain why the following code will not compile, and how to fix the
problem so that the code does compile (and correctly count the number of lines in the file whose
filename is passed as the parameter):

public static int countLines(String fileName) {

FileReader fr = new FileReader(fileName);

try {

BufferedReader br = new BufferedReader(fr);

int count = 0;

while (br.readLine() != null) { count++; }

return count;

} finally {

fr.close();

}

}

Question 8. [5 points] Consider a fractal constructed in the following way. The first generation
(0) of the fractal is an isosceles triangle whose base and height are each equal to 2. Each succeeding
generation is constructed by connecting connecting three copies of the previous generation as shown
below:

Let f(n) be the total area of all of the small (shaded) triangles in a generation n fractal. Our
induction hypothesis, IH(n), is that for all n ≥ 0, f(n) = 2 · 3n.

Basis step. Prove that IH(0) is true by showing that f(0) = 2. (The area of a triangle is 1
2bh.)

Expectation. State IH(n + 1): f(n + 1) =

Recurrence. Define f(n + 1) in terms of f(n). In other words, how does the total area of the
shaded triangles increase from one generation to the next? Explain briefly.

Induction step. Show that if IH(n) is true, then IH(n + 1) must also be true. Expand the
occurrence of f(n) in your recurrence, and show that the resulting equation can be rewritten to
exactly match the expectation.

Programming Questions

To get started, use a web browser to download the zipfile as specified by your instructor. Import
it as an Eclipse project using File → Import... → General → Existing Projects into Workspace →
Archive file.

You should see a project called CS201 Final.

Important: You may use the following resources:

• The lecture notes posted on the course web page

• Your previous labs and assignments

• The Java API documentation at http://docs.oracle.com/javase/7/docs/api/

When you finish, use the blue up arrow icon to upload your work to Marmoset.

Question 9. [15 points] Complete the definition of the Cell class. An instance of Cell represents
a cell in a one-dimensional cellular automaton, and is either alive or dead. The constructor takes
a boolean value indicating whether the Cell object being initialized is alive or dead. The isAlive

method returns a boolean value indicating whether the cell is alive or dead.

The computeNext method returns a new Cell that reflects whether the current cell should be alive
or dead in the next generation of cells. It implements Wolfram’s Rule 110 (you may recall this
from CS 101.) It takes two parameters, references to Cell objects representing the left and right
neighbors. The computeNext method should return a cell that is dead if either:

• The left neighbor, current cell, and right neighbor are all dead

• The left neighbor is alive, and the current cell and right neighbor are both dead

• The left neighbor, current cell, and right neighbor are all alive

Otherwise, computeNext should return a cell that is alive.

The CellTest JUnit test class has unit tests.

If the Cell class is implemented correctly and
you run the Rule110 program, you should see
the output shown on the right.

Expected output of Rule110:

..........*.

.........**.

........***.

.......**.*.

......*****.

.....**...*.

....***..**.

...**.*.***.

..*******.*.

.**.....***.

Question 10. [15 points] In the class Q10, complete the static method hexToInt. It takes a
string s, which is a number in hexidecimal format. Hexidecimal is a base-16 representation of an
integer value, where the letters A through F represent hexidecimal “digits” with values 10–15. For
example, the hexidecimal number 2C3 corresponds to the decimal integer 707, because

2 · 162 + 12 · 161 + 3 · 160 = 707

(Note that the value hexidecimal digit C is 12.)

Important: Your method must be recursive. Do not use a loop.

The JUnit test class Q10Test contains unit tests.

You can use the Character.isDigit(char) method to determine whether or not a character is a
(decimal) digit (i.e., 0 through 9). If c is a decimal digit, then c - ’0’ is the value of that digit.
If c is a letter A through F, then 10 + (c - ’A’) is the value of that hexidecimal digit.

The String class’s substring method will be useful. It takes two integers, the indices of the first
(inclusive) and last (exclusive) characters of the substring you would like to retrieve.

Hints: think about what base case or cases are appropriate. Make sure your recursive call or calls
are on subproblem(s) that work towards a base case.

Question 11. [15 points] In the class Q11, complete the definition of the static method hasDuplicates.
It takes a List of elements of type E (where E is a type that implements the Comparable interface),
and returns true if the list contains any duplicate values, false if it does not contain any duplicate
values.

Important: your method must execute in O(N logN) running time, where N is the number of
elements in the list.

Hint: what kind of collection is useful for detecting duplicates?

Unit tests are provided in the Q11Test JUnit test class.

