
tuProlog with exceptions

Enrico Denti

December 16, 2010

Abstract

This document describes the new support for ISO Prolog exceptions in
tuProlog 2.2. Please notice that this document is not intended to replace
a tutorial nor a full manual about exception support in Prolog: rather, it
means to provide a short yet effective reference to the exception support
added in this tuProlog version.

1 Exceptions in ISO Prolog

The ISO Prolog standard (ISO/IEC 13211-1) has been published in 1995. Among
the many additions, it introduces the catch/3 e throw/1 constructs for excep-
tion handling. The first distinction has to be made between errors and excep-
tions. An error is a particular circumstance that interrupts the execution of a
Prolog program: when a Prolog engine encounters an error, it raises an excep-
tion. The exception handling support is supposed to intercept the exception and
transfer the execution flow to a suitable exception handler, with any relevant
information. Two basic principles are followed during this operation:

• error bounding – an error must be bounded and not propagate through the
entire program: in particular, an error occurring inside a given component
must either be captured at the component’s frontier, or remain invisible
and be reported nicely. According to ISO Prolog, this can be done via the
catch/3 predicate.

• atomic jump – the exception handling mechanism must be able to exit
atomically from any number of nested execution contexts. According to
ISO Prolog, this is done via the throw/1 predicate.

In practice, throw(Error ) raises an exception, while the controlled execution of
a goal is launched via the catch(Goal, Catcher, Handler ) predicate, which
is very much like the try/catch construct of many imperative languages. Here,
Goal is first executed: if an error occurs, the subgoal where the error occurred is
replaced by the corresponding throw(Error ), which raises the exception. Then,
a matching catch/3 clause – that is, a clause whose second argument unifies
with Error – is searched among the antenate nodes in the resolution tree: if
one is found, the path in the resolution tree is cut, the catcher itself is removed
(because it only applies to the protected goal, not to the handler), and the
Handler predicate is executed. If, instead, no such matching clause is found, the
execution simply fails. So, catch(Goal, Catcher, Handler ) performs exactly
like Goal if no exception are raised: otherwise, all the choicepoints generated

1



by Goal are cut, a matching Catcher is looked for, and if a one is found then
Handler is executed, maintaining the substitutions made during the previous
unification process. In the very end, the execution continues with the subgoal
which follows catch/3. However, any side effects possibly occurred during the
execution of a goal are not undone in case of exceptions, exactly as it normally
happens when a predicate fails. Summing up, catch/3 is true if:

• call(Goal ) is true;

or

• call(Goal ) is interrupted by a call to throw(Error ) whose Error unifies
with Catcher , and the subsequent call(Handler ) is true;

If Goal is non-deterministic, it can obviously be executed again in back-
tracking. However, it should be clear that Handler is possibly executed just
once, since all the choicepoints of Goal are cut in case of exception.

1.1 Examples

As a first, basic example, let us consider the following toy program:

p(X):- throw(error), write(’---’).

p(X):- write(’+++’).

and let us consider the behaviour of the program in response to the execution
of the goal:

?:- catch(p(0), E, write(E)), fail.

which tries to execute p(0), catching any exception E and handling the error
by just printing it on the standard output (write(E)).

Perhaps surprisingly, the program will just print ’error’, not ’error---’

or ’error+++’. The reason is that once the exception is raised, the execution
of p(X) is aborted, and after the handler terminates the execution proceeds
with the subgoal which follows catch/3, i.e. fail. So, write(’---’) is never
reached, nor is write(’+++’) since all the choicepoints are cut upon exception.

In the following we report a small yet complete set of mini-examples, thought
to put in evidence one single aspect of tuProlog compliance to the ISO standard.

Example 1: Handler must be executed maintaining the substitutions made
during the unification process between Error and Catcher

Program: p(0) :- throw(error).

Query: ?- catch(p(0), E, atom length(E, Length)).

Answer: yes.

Substitutions: E/error, Length/5

Example 2: the selected Catcher must be the nearest in the resolution tree
whose second argument unifies with Error

Program: p(0) :- throw(error).

p(1).

Query: ?- catch(p(1), E, fail), catch(p(0), E, true).

Answer: yes.

2



Substitutions: E/error

Example 3: execution must fail if an error occurs during a goal execution
and there is no matching catch/3 predicate whose second argument unifies with
Error

Program: p(0) :- throw(error).

Query: ?- catch(p(0), error(X), true).

Answer: no.

Example 4: execution must fail if Handler is false
Program: p(0) :- throw(error).

Query: ?- catch(p(0), E, false).

Answer: no.

Example 5: if Goal is non-deterministic, it is executed again on backtrack-
ing, but in case of exception all the choicepoints must be cut, and Handler must
be executed only once

Program: p(0).
p(1) :- throw(error).

p(2).

Query: ?- catch(p(X), E, true).

Answer: yes.

Substitutions: X/0, E/error
Choice: Next solution?

Answer: yes.

Substitutions: X/1, E/error
Choice: Next solution?

Answer: no.

Example 6: execution must fail if an exception occurs in Handler

Program: p(0) :- throw(error).

Query: ?- catch(p(0), E, throw(err)).

Answer: no.

1.2 Error classification

So far we have just said that, when an exception is raised, throw(Error ) is
executed, and a matching catch/3 is looked for, but no specifications have
been given about the possible structure of the Error term. According to the
ISO Prolog standard, such a term should follow the pattern error(Error term,

Implementation defined term ) where Error term is constrained by the stan-
dard to a pre-defined set of possible values, in order to represent the error
category: Implementation defined term , instead, is left for implementation-
specific details, and could also be omitted.

The error classification induced by Error term is flat, so as to easily support
pattern matching. Ten error classes are identified by the ISO standard:

1. instantiation error: when the argument of a predicate or one of its
components is a variable, while it should be instantiated. A typical exam-
ple is X is Y+1 if Y is not instantiated when is/2 is evaluated.

3



2. type error(ValidType, Culprit ): when the type of an argument of
a predicate, or one of its components, is instantiated, but nevertheless
incorrect. In this case, ValidType represents the expected data type
(one of atom, atomic, byte, callable, character, evaluable, in byte,
in character, integer, list, number, predicate indicator, variable),
while Culprit is the wrong type found. For instance, if a predicate op-
erates on dates and expects months to be represented as integers between
1-12, calling the predicate with an argument like march instead of 3 would
raise a type error(integer, march), since an integer was expected and
march was found instead.

3. domain error(ValidDomain, Culprit ): when the argument type is cor-
rect, but its value falls outside the expected range. ValidDomain is one
of character code list, close option, flag value, not empty list,
not less than zero, io mode, operator priority, operator specifier,
prolog flag, read option, source sink, stream, stream option,
stream or alias, stream position, stream property, write option.
In the example above, a domain error could be raised if, for instance,
a value like 13 was provided for the month argument.

4. existence error(ObjectType, ObjectName : when the referenced ob-
ject to be accessed does not exist. Again, ObjectType is the type of the
unexisting object, and ObjectName its name. ObjectType is procedure,
source sink, or stream. If, for instance, the file ’usr/goofy’ does not
exist, an existence error(stream, ’usr/goofy’) would be raised.

5. permission error(Operation, ObjectType, Object ): when Operation

is not allowed on Object , which is of type ObjectType . Operation is one
of access, create, input, modify, open, output, or reposition, while
ObjectType falls among binary stream, operator, past end of stream,
private procedure, static procedure, source sink, stream, flag, and
text stream.

6. representation error(Flag ): when an implementation-defined limit,
whose category is given by Flag , is violated during execution. Flag

is one of character, character code, in character code, max arity,
max integer, min integer.

7. evaluation error(Error ): when the evaluation of a function produces
an exceptional value. Accordingly, Error is one of float overflow,
int overflow, undefined, underflow, zero divisor.

8. resource error(Resource ): when the Prolog engine does not have enough
resources to complete the execution of the current goal. Typical examples
are the reach of the maximum number of opened files, no further available
memory, etc. Accordingly, resource error(Resource) can be any valid
term.

9. syntax error(Message ): when external data, read from an external
source, have an incorrect format or cannot be processed for some reason.
This kind of error typically occurs during read operations. Message can
be any valid (simple or compound) term describing the occurred problem.

4



10. system error: this latter category represents any other unexpected error
which does not fall in any of the above categories.

2 Implementing Exceptions in tuProlog

Implementing exceptions in tuProlog does not mean just to extend the engine to
support the above mechanisms: given its library-based design, and its intrinsic
support to multi-paradigm programming, adding exceptions in tuProlog has also
meant (1) to revise all the existing libraries, modifying any library predicate so
that it raises the appropriate type of exception instead of just failing; and (2) to
carefully define and implement a model to make Prolog exceptions not only co-
exist, but also fruitfully operate with the Java (or C#/.NET) imperative world,
which brings its own concept of exception and its own handling mechanism.

As a preliminary step, the finite-state machine which constitutes the core
of the tuProlog engine was extended with a new Exception state, between the
existing Goal Evaluation and Goal Selection states. Then, all the tuProlog
libraries were revised, according to clearness and efficiency criteria — that is,
the introduction of the new checks required for proper exception raising should
not reduce performance unacceptably. This issue was particularly relevant for
runtime checks, such as existence errors or evaluation errors; moreover,
since tuProlog libraries could also be implemented partly in Prolog and partly
in Java, careful choices had to be made so as to introduce such checks at the most
adequate level in order to intercept all errors while maintaining code readability
and overall organisation, while guaranteeing efficiency. This led to intervene
with extra Java checks for libraries fully implemented in Java, and with new
”Java guards” for predicates implemented in Prolog, keeping the use of Prolog
meta-predicates (such as integer/1) to a minimum.

With respect to the third aspect, which will be discussed more in depth
below, one key aspect to be put in evidence right now concerns the handling of
Java objects accessed from the Prolog world via Javalibrary. At a first sight,
one might think of re-mapping Java exceptions and constructs onto the Prolog
one, but this approach is unsatisfactory for three main reasons:

• the semantics of the Java mechanism should not be mixed with the Prolog
one, and vice-versa;

• the Java construct admits also a finally clause which has no counterpart
in ISO Prolog;

• the Java catching mechanisms operates hierarchically, while the catch/3

predicate operates via pattern matching and unification, allowing for mul-
tiple granularities.

For these reasons, supporting Java exceptions from tuProlog programs called
for two further, ad hoc predicates which are not present in ISO Prolog because
ISO Prolog does not consider multi-paradigm programming: java throw/1 and
java catch/3.

2.1 Java exceptions from tuProlog

The java throw/1 predicate has the form

5



java throw(JavaException (Cause, Message, StackTrace ))

where JavaException is named after the specific Java exception to be launched
(e.g., ’java.io.FileNotFoundException’, and its three arguments represent
the typical properties of any Java exception. More precisely, Cause is a string
representing the cause of the exception, or 0 if the cause is unknown; Message
is the message associated to the error (or, again, 0 if the message is missing);
StackTrace is a list of strings, each representing a stack frame.

The java catch/3 predicate takes the form

java catch(JGoal, [(Catcher1, Handler1 ),

...,
(CatcherN, HandlerN )], Finally )

where JGoal is the goal (representing a Java operation in the Java world) to
be executed under the protection of the handlers specified in the subsequent
list, each associated to a given type of Java exception and expressed in the
form java exception(Cause, Message, StackTrace ), with the same argu-
ment semantics explained above. The third argument Finally expresses the
homonomous Java clause, and therefore represents the predicate to be executed
at the very end either of the Goal or one of the Handler s. If no such a clause
is actually needed, the conventional atom (’0’) has to be used as a placeholder.

The predicate behaviour can be informally expressed as follows. First, JGoal
is executed. Then, if no exception is raised via java throw/1, the Finally goal
is executed. If, instead, an exception is raised, all the choicepoints generated by
JGoal (in the case of a non-deterministic predicate like java object bt/3, of
course) are cut: if a matching handler exists, such a handler is executed, main-
taining the variable substitutions. If, instead, no such a handler is found, the
resolution tree is backsearched, looking for a matching java catch/3 clause:
if none exists, the predicate fails. Upon completion, the Finally part is ex-
ecuted anyway, then the program flow continues with the subgoal following
java catch/3. As already said above, side effects possibly generated during
the execution of JGoal are not undone in case of exception.

So, summing up, java catch/3 is true if:

• JGoal and Finally are both true;

or

• call(JGoal ) is interrupted by a call to java throw/1 whose argument
unifies with one of the Catcher s, and both the execution of the catcher
and of the Finally clause are true.

Even if JGoal is a non-deterministic predicate, like java object bt/3, and
therefore the goal itself can be re-executed in backtracking, in case of exception
only one handler is executed, then all the choicepoints generated by JGoal are
removed: so, no further handler would ever be executed for that exception.
In other words, java catch/3 only protects the execution of JGoal , not the
handler execution or the Finally execution.

2.2 Examples

First, let us consider the following program:

6



?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.ClassNotFoundException’(Cause, Msg, StackTrace),

write(Msg))],

write(+++)).

which tries to allocate an instance of Counter, bind it to the atom c, and – if
everything goes well – print the ’+++’ message on the standard output. Indeed,
this is precisely what happens if, at runtime, the class Counter is actually avail-
able in the file system. However, it might also happen that, for some reason,
the required class is not present in the file system when the above predicate
is executed. Then, a ’java.lang.ClassNotFoundException’(Cause, Msg,

StackTrace) exception is raised, no side effects occur – so, no object is ac-
tually created – and the Msg is printed on the standard output, followed by
’+++’ as required by the Finally clause. Since the Msg in this exception is
the name of the missing class, the global message printed on the console is
Counter+++.

In the following we report a small yet complete set of mini-examples, thought
to put in evidence one single aspect of tuProlog compliance to the ISO standard.

Example 1: the handler must be executed maintaining the substitutions
made during the unification process between the exception and the catcher: then,
the Finally part must be executed.

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.ClassNotFoundException’(Cause, Message, _),

X is 2+3)], Y is 2+5).

Answer: yes.

Substitutions: Cause/0, Message/’Counter’, X/5, Y/7.

Example 2: the selected java catch/3 must be the nearest in the resolution
tree whose second argument unifies with the launched exception

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.ClassNotFoundException’(Cause, Message, _),

true], true),

java_catch(java_object(’Counter’, [’MyCounter2’], c2),

[(’java.lang.ClassNotFoundException’(Cause2, Message2, _),

X is 2+3], true).

Answer: yes.

Substitutions: Cause/0, Message/’Counter’, X/5, C/0, Message2/’Counter’.

Example 3: execution must fail if an exception is raised during the execu-
tion of a goal and no matching java catch/3 can be found

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.Exception’(Cause, Message, _), true)], true)).

Answer: no.

Example 4: java catch/3 must fail if the handler is false

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.Exception’(Cause, Message, _), false)], true)).

7



Answer: no.

Example 5: java catch/3 must fail also if an exception is raised during
the execution of the handler

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.ClassNotFoundException’(Cause, Message, _),

java_object(’Counter’, [’MyCounter’], c))], true).

Answer: no.

Example 6: the Finally must be executed also in case of success of the
goal

?- java_catch(java_object(’java.util.ArrayList’, [], l),

[E, true], X is 2+3).

Answer: yes.

Substitutions: X/5.

Example 7: the Handler to be executed must be the proper one among those
available in the handlers’ list

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.Exception’(Cause, Message, _), X is 2+3),

(’java.lang.ClassNotFoundException’(Cause, Message, _), Y is 3+5)],

true).

Answer: yes.

Substitutions: Cause/0, Message/’Counter’, Y/8.

3 Library predicates

All tuProlog library predicates have been revised so as to raise the proper ex-
ceptions, instead of failing, as specified by ISO standards. Please refer to such
standards for specific information on this topic.

With respect to tuProlog multi-paradigm programming, supported by JavaL-
ibrary, two further predicates have been introduced beyond the ISO standard
discussed above: java throw/1 and java catch/3. These predicates work sim-
ilarly to the standard throw/1 and catch/3 predicates, but refer to excep-
tions raised inside the Java world, instead of Prolog-raised ones. More info
on this topic will be added in a future version of this document. However,
some (hopefully clear) usage examples can be found in the test source file
JavaLibraryExceptionsTestCase.java in the exceptions-test folder.

8


