\qquad
Question 1. [10 points] Twin primes are pairs of integers $m, m+2$ such that both m and $m+2$ are prime.

Assume that you have a function called is_prime available that takes an integer and returns true or false depending on whether or not that integer is prime. For example, is_prime(11) would return a true value, while is_prime(25) would return false.

Using pseudo-code, sketch a sequential algorithm which, given a range of integers in the range from \min to \max, will find the largest pair of twin primes within that range. For example, if $\min =1$ and $\max =20$, the algorithm should find the pair 17,19. If there are no prime pairs in the range, then the algorithm should indicate that the search failed.

Question 2. [40 points] Using pseudo-code, sketch a message-passing parallel algorithm which uses P communicating processes to find the largest pair of twin primes in the range from \min to max. You may use your sequential algorithm from Question 1 as a subroutine.

You can assume that each process will know min, max, P, and its own rank.
Be sure to indicate

- How the problem is divided up between processes
- How the processes will communicate to combine their local solutions into a global solution (hint: the pseudo-code equivalent of MPI_Allreduce and the MPI_MAX operator might be useful)

Note: you should design the algorithm so that all processes will terminate relatively soon (but not necessarily immediately) after the global solution is discovered.

Hint: the algorithm should start searching the highest part of the input range first, since you are looking for the largest pair of twin primes.

Question 3. [50 points] Implement your parallel algorithm from Question 2 using MPI.
Using your VNC session on the cluster head node, start a web browser and open the following page:
http://faculty.ycp.edu/~dhovemey/spring2013/cs365/assign/exam1.html

