
CS 101, Spring 2017 — May 4th — Exam 4 Name:

Question 1. [5 points] Consider the following partially-complete program, which begins on the
left and continues on the right:

#include <stdio.h>

void set_to_ten(int *p);

void set_to_ten(int *p) {

*p = 10;

}

int main(void) {

int x = 4;

HERE

printf("x=%i\n", x);

return 0;

}

Show a statement that can be substituted for HERE so that the output of the program will be
x=10 . Hint: call the set_to_ten function.

Question 2. [5 points] Consider the following struct data type:

struct Point {

double x, y;

};

(a) Show code to declare a variable called planet whose data type is struct Point.

(b) Show code to initialize the x and y coordinates of planet to 45.2 and 3.07, respectively.



Question 3. [5 points] Consider the following partially-complete program, which begins on the
left and continues on the right:

#include <stdio.h>

struct Point {

double x, y;

};

void point_print(struct Point p);

void point_print(struct Point p) {

printf("x=%.2lf, y=%.2lf\n",

p.x, p.y);

}

int main(void) {

struct Point p;

printf("Enter x and y values: ");

scanf("%lf %lf", &p.x, &p.y);

HERE

return 0;

}

Show code that can be substituted for HERE so that the point_print function will print the x
and y coordinate values entered by the user. (I.e., your code should be a call to the point_print

function.)



Question 4. [15 points] Consider the following partially-complete program, which begins on the
left and continues on the right:

#include <stdio.h>

#define NUM_PIXELS 100

struct Point {

double x, y;

};

struct Velocity {

double dx, dy;

};

struct Pixel {

int red;

int green;

int blue;

struct Point location;

struct Velocity velocity;

};

void move_pixels(struct Pixel p[], int size);

int main(void) {

HERE1

// assume pixels array has been initialized

HERE2

return 0;

}

void move_pixels(struct Pixel p[], int size) {

HERE3

}

(a) Show code that can be substituted for HERE1 to declare an array, named pixels, composed
of NUM PIXELS elements of type struct Pixel.

(b) Show code that can be substituted for HERE2 to call the move pixels function, passing in the
pixels array, and the size of the array. (Assume that the elements of the pixels array have been
initialized.)

(c) Show code that can be substituted for HERE3 that will cause move pixels function to update
each pixel’s location based on its respective velocity, i.e., add dx to x and store in x, add dy to y
and store in y. HINT: This will require a for loop inside the move pixels function.



Question 5. [10 points] Consider the following partially-complete program, which begins on the
left and continues on the right:

#include <stdio.h>

struct Point {

double x, y;

};

struct Point point_create(

double xval, double yval);

struct Point point_create(

double xval, double yval) {

HERE1

}

int main(void) {

struct Point p;

HERE2

printf("x=%.2lf, y=%.2lf\n",

p.x, p.y);

return 0;

}

(a) Show code to substitute for HERE1 that will return a struct Point initialized by the x and y
coordinate values specified by the parameters xval and yval.

(b) Show code to substitute for HERE2 that uses the point_create function to initialize the
variable p such that the printf statement will print the output x=4.50, y=6.33 .



Question 6. [15 points] Consider the following partially-complete program, which begins on the
left and continues on the right:

#include <stdio.h>

#define NUM_PIXELS 100

struct Point {

double x, y;

};

struct Velocity {

double dx, dy;

};

struct Pixel {

int red;

int green;

int blue;

struct Point location;

struct Velocity velocity;

};

HERE1

int main(void) {

struct Pixel pixel;

struct Point location;

struct Velocity velocity;

// assume that location and velocity

// have been initialized

HERE2

return 0;

}

HERE3

(a) Show code that can be substituted for HERE1 to declare a prototype for the init pixel

function. The function should return void and accept the following parameters: a pointer to a
struct Pixel instance, a pointer to a struct Point instance, and a pointer to a struct Velocity

instance.

(b) Show code that can be substituted for HERE2 that calls the init pixel function, passing
pixel, location, and velocity to init pixel by reference (using pointers). You may assume
that all three structs have been initialized.

[Question 6 continues on next page.]



(c) Show code that can be substituted for HERE3 that provides a definition for the init pixel

function. The function should assign the provided Location and Velocity to the respective el-
ements of the Pixel passed to the function. It should also initialize the red, green, and blue

elements to 0.



Programming Questions

Note: For all of the programming questions, you should use scanf to read the input value(s)
required by the program.

Note: Make sure your programs produce the output in exactly the format described, including
capitalization and punctuation. You may not receive credit for programs that produce incorrectly-
formatted output.

Getting started: Start Cygwin Terminal and Notepad++ and make sure ALL TABS are
closed. (Note: do not open any other programs.) Your instructor will give you the name of a zip
file. In your terminal, run the following commands:

cd h:

mkdir -p CS101

cd CS101

curl -O http://faculty.ycp.edu/~dhovemey/spring2017/cs101/zipfile
unzip zipfile
cd CS101_Exam04

Note that in the curl command, the -O has the letter ‘O’, not the digit ‘0’.

Substitute the name of the zip file for zipfile.

Editing code: Use your text editor to open the source file (e.g., question7.cpp) referred to in
the question. Do not open any files other than the ones for the exam.

Compiling: To compile the program for Question 7, run the following command in the terminal:

make question7.exe

Change the number as appropriate for the other questions (e.g., question8.exe).

Running: To run the program for Question 7, run the following command in the terminal:

./question7.exe

Change the number as appropriate for the other questions (e.g., question8.exe).

To submit: In Cygwin Terminal, run the command

make submit

Enter your Marmoset username and password when prompted.

Good luck!



Question 7. [30 points] Complete the program in question7.cpp by implementing the distance_between
and find_closest functions.

The program defines a struct Point data type to represent a 2-D point. The main function, which
is provided for you and which you may not modify, does the following:

1. Prompts the user to enter an integer count (number of points)

2. Prompts the user to enter x and y coordinates for a sequence of points, which is stored in an
array of struct Point elements

3. Prompts the user to enter the x and y coordinates of a “target” point

4. Uses the find_closest function to find the point in the sequence of points that is closest to
the target point

Example run (user input in bold):

How many points? 4
Enter x/y coordinates of points:

103.7 99.5
5.7 -6.9
45.8 -9.3
11.1 35.6
Enter x/y coordinates of target point: -23.4 8.99
Closest point to target is (5.70, -6.90)

Distance to closest point is 33.16

Your tasks are to write function definitions of the distance_between and find_closest functions.

The distance_between function takes two struct Point parameters and returns the distance
between them. The formula to find the distance between two points is

�
(x2 − x1)2 + (y2 − y1)2

where x1, y1 and x2, y2 are the x/y coordinates of the two points.

The find_closest function takes three parameters: points, an array of struct Point elements,
num_points, the number of elements contained in the points array, and target, a struct Point

instance. The function should return the struct Point element of the array which is closest to
target. (Use the distance_between function to compute distances between points.)

Hints:

• Start by assuming that the first element of the array is the closest; then check the distances
between the target point and the other elements of the array

• In addition to an index variable you will need at least two additional loop variables: one to
keep track of the distance between the target and the current closest point, and another to
keep track of which element of the array is the closest so far

• You may find it helpful to add printf statements to the body of the find_closest function
to print out the progress of the search for the point closest to the target



Question 8. [15 points] Complete the program in question8.cpp to add a definition for the
reverse_pixel_dir function. It takes a pointer to a struct Pixel instance as a parameter, and
should reverse the direction of the pixel by reversing (negating the sign of) the dx/dy components
of its velocity.

The provided main function, which you may not modify,

1. Declares and initializes an instance of struct Pixel

2. Prints the initial velocity dx/dy values

3. Calls the reverse_pixel_dir function, passing a pointer to the struct Pixel instance as
an argument

4. Prints the updated velocity dx/dy values

Example run (note that there is no user input):

Original pixel velocity: dx=-4.50, dy=5.20

Updated pixel velocity: dx=4.50, dy=-5.20

Hints:

• Note that the reverse_pixel_dir function takes a pointer to a struct Pixel instance

• Also note that the dx and dy fields are part of a nested struct Velocity instance within
the struct Pixel instance


