
CS 201, Fall 2015 — Oct 23rd — Exam 2 Name:

Question 1. [5 points] State a big-O upper bound on the worst case running time of the given
method, where the problem size N is the number of elements in the array passed as its parameter.
Explain your answer briefly.

public static int mystery(int[] arr) {

int sum = 0;

for (int i = 0; i < arr.length*arr.length; i++) {

sum += arr[i % arr.length];

}

return sum;

}

Question 2. [5 points] State a big-O upper bound on the worst case running time of the given
method, where the problem size N is the number of elements in the array passed as its parameter.
Explain your answer briefly.

public static int mystery(int[] arr) {

int sum = 0;

for (int i = 0; i < arr.length*arr.length; i++) {

sum += arr[i % arr.length];

}

for (int i = 0; i < arr.length; i++) {

sum += arr[i];

}

return sum;

}



Question 3. [5 points] State a big-O upper bound on the worst case running time of the given
method, where the problem size N is the number of elements in the array passed as its parameter.
Explain your answer briefly.

public static int mystery(int[] arr) {

int sum = 0;

for (int i = 0; i < arr.length; i++) {

for (int j = 0; j < arr.length; j++) {

sum += arr[(i*j) % arr.length];

}

}

return sum;

}

Question 4. [5 points] State a big-O upper bound on the worst case running time of the given
method, where the problem size N is the number of elements in the array passed as its parameter.
Explain your answer briefly.

public static int mystery(int[] arr) {

int sum = 0;

for (int i = 0; i < arr.length; i++) {

for (int j = i; j >= i; j--) {

sum += arr[(i*j) % arr.length];

}

}

return sum;

}



Question 5. [5 points] State a big-O upper bound on the worst case running time of the given
method, where the problem size N is the value of the method’s parameter. Explain your answer
briefly.

public static int mystery(int n) {

int sum = 0;

for (int i = n; i > 0; i = i / 2) {

sum += i;

}

return sum;

}

Question 6. [5 points] Briefly explain the problem with the following method, and how to fix it.

public static<E> int countGreaterThan(ArrayList<E> list, E value) {

int count = 0;

for (int i = 0; i < list.size(); i++) {

E elt = list.get(i);

if (elt.compareTo(value) > 0) {

count++;

}

}

return count;

}



Question 7. [10 points] Complete the following method, called makeAllPositive. It takes
a reference to an ArrayList of Integer elements as a parameter. It should change all of the
negative elements in the list to positive values. Example JUnit test:

ArrayList<Integer> a = new ArrayList<Integer>();

a.addAll(Arrays.asList(-9, 0, -4, -2, 4));

makeAllPositive(a);

assertEquals((Integer)9, a.get(0));

assertEquals((Integer)0, a.get(1));

assertEquals((Integer)4, a.get(2));

assertEquals((Integer)2, a.get(3));

assertEquals((Integer)4, a.get(4));

Note that the Java compiler will automatically convert between int and Integer values.

Hints:

• Use the size method to get the number of elements in the list
• Use the get method to retrieve the value at a specific index
• Use the set method to change the value at a specific index

public static void makeAllPositive(ArrayList<Integer> list) {



Question 8. [10 points] Construct the class Shape that has abstract methods calcPerimeter and
calcArea, which have no parameters, and return floating point numbers. Shape also has fields
named type, origin, perimeter, and area. type is a String, origin is a Point, and perimeter

and area are floating point numbers.

Make sure to define all of the appropriate accessor functions for the fields in Shape. Allow only the
constructor to set type, and for extra credit (+2), only allow sub-classes of Shape to calculate or
change perimeter and area.



Question 9. [10 points] Create the concrete class RegularPolygon from as a subclass of the
Shape class you specified in Question 8. RegularPolygon should also implement the Comparable

interface, comparing the areas of the two objects involved in the comparison. It has a constructor
that accepts values for type, origin, sides, and length. The constructor calls calcPerimeter

and calcArea to initialize the perimeter and area fields.

Implement the appropriate accessor methods, restricting access so that only the constructor can
set the side, length, perimeter, and area fields. Remember to declare and implement everything
necessary to make RegularPolygon a concrete class, except that you can insert “<CODE>” in the
bodies of any required methods that are not accessor methods or part of the Comparable interface.



Programming Question

To get started, use a web browser to download the zipfile as specified by your instructor. Import
it as an Eclipse project using File → Import... → General → Existing Projects into Workspace →
Archive file.

Important: You may use the following resources:

• The textbook
• The lecture notes posted on the course web page
• Your previous labs and assignments

Do not open any other files, web pages, etc.

Question 10. [40 points] In the Exam2 class, complete the countBetween static method. It takes an
ArrayList (list) whose elements of generic type E are guaranteed to implement the Comparable

interface, and also values min and max of the same type E. The method should return the count
of how many elements of list have values that are greater than or equal to min and less than or
equal to max.

JUnit tests are provided in the class Exam2Test. Make sure that the tests pass!

Hints:

• Compare elements using the compareTo method

When you are ready to submit your code, export the CS201 Exam02 project as a zip file and
upload it to the Marmoset server as exam02:

https://cs.ycp.edu/marmoset


