Proof by induction that

$$
\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all integers $n \geq 1$.
Induction hypothesis: The general case of the induction hypothesis, $I H(n)$, is

$$
f(n)=\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Basis step: $I H(1)$ predicts that

$$
f(1)=\sum_{i=0}^{1} i^{2}=\frac{1(1+1)(2 \cdot 1+1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=\frac{6}{6}=1
$$

This is the sum of the squares from 0 to 1 , so $I H(1)$ is true.

Induction step:

Expectation: $I H(n+1)$ is

$$
f(n+1)=\sum_{i=0}^{n+1} i^{2}=\frac{(n+1)(n+2)(2(n+1)+1)}{6}
$$

Connecting cases for n and $n+1$: we can observe that

$$
\begin{aligned}
f(n+1)=\sum_{i=0}^{n+1} i^{2} & =1^{2}+2^{2}+3^{3}+\ldots+n^{2}+(n+1)^{2} \\
& =\sum_{i=0}^{n} i^{2}+(n+1)^{2} \\
& =f(n)+(n+1)^{2}
\end{aligned}
$$

Assuming $I H(n)$ is true, then

$$
\begin{aligned}
f(n+1) & =f(n)+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{2 n^{3}+9 n^{2}+13 n+6}{6} \\
& =\frac{(n+1)(n+2)(2(n+1)+1)}{6}
\end{aligned}
$$

This matches the expectation, proving that if $I H(n)$ is true, then $I H(n+1)$ must also be true.

