Proof by induction that
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for all integers n > 1.

Induction hypothesis: The general case of the induction hypothesis, TH(n), is
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Basis step: TH(1) predicts that
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This is the sum of the squares from 0 to 1, so TH(1) is true.
Induction step:

Expectation: TH(n+ 1) is
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Connecting cases for n and n + 1: we can observe that
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Assuming T H(n) is true, then
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This matches the expectation, proving that if TH(n) is true, then IH(n + 1) must also be true.



