
CS 201, Fall 2016 — Dec 2nd — Exam 3 Name:

Question 1. [6 points] State a big-O upper bound on the worst-case running time of the following
method, where the problem size N is the number of elements in the ArrayList passed as the
parameter. Briefly justify your bound.

public static<E extends Comparable<E>>

Collection<E> getSortedCollection(ArrayList<E> list) {

TreeSet<E> treeSet = new TreeSet<E>();

for (E elt : list) {

treeSet.add(elt);

}

return treeSet;

}

Question 2. [6 points] State a big-O upper bound on the worst-case running time of the following
method, where the problem size N is the number of elements in the LinkedList passed as a
parameter. Briefly justify your bound.

public static void removeEven(LinkedList<Integer> list) {

Iterator<Integer> i = list.iterator();

while (i.hasNext()) {

Integer val = i.next();

if (val % 2 == 0) {

i.remove();

}

}

}



Question 3. [6 points] What output is printed by the following code?

Queue<Integer> q = new LinkedList<Integer>();

Stack<Integer> s = new Stack<Integer>();

for (int i = 1; i <= 4; i++) {

q.add(i);

s.push(i);

}

for (int i = 1; i <= 4; i++) {

System.out.println(s.pop());

System.out.println(q.remove());

}

Question 4. [6 points] Consider the following recursive method, which is intended to compute
the sum of the integers from 1 to n:

public static int sumInts(int n) {

return sumInts(n-1) + n;

}

(a) Briefly explain the bug in this method.

(b) What exception will be thrown by the method when it is called?

(c) Briefly describe how to fix the bug.



Question 5. [8 points] Consider the following recursive method:

public static int pigSeq(int sum) { // assume sum is non-negative

if (sum == 0) { return 1; }

if (sum == 1) { return 0; }

int numSeq = 0;

for (int i = 2; i <= 6; i++) {

if (sum - i >= 0) { numSeq += pigSeq(sum - i); }

}

return numSeq;

}

Write a memoized version of this function called pigSeqMemo. It will be called by the following
function:

public static int pigSeq(int sum) {

return pigSeqMemo(sum, new int[sum + 1]);

}

Hints:

• The original version of pigSeq always returns a non-zero value for any value of sum 2 or
greater

• The array passed to pigSeqMemo can be indexed by any integer 0..sum, inclusive

• Make sure that a recursive call to pigSeqMemo is only made once per sub-problem



Question 6. [6 points] Briefly explain under what circumstances adding additional threads will
likely not speed up (and could even slow down) the performance of an algorithm that can be divided
into N independent tasks.

Question 7. [6 points] Complete the following code to update the inventory count for a given
make of car. Note: There are 3 separate lines of code to fill in.

public Integer updateCarInventory(

TreeMap<String, Integer> carInventory, String car, Integer count) {

// if car is not in the inventory...

if (!carInventory.containsKey(car)) {

// ...add it to the map (add CODE here)

}

else {

// otherwise, update the car’s count in the map (add CODE here)

}

// return the updated count for the car (add CODE here)

}



Question 8. [6 points] Consider an array of 256 (28) integers:

(a) What is the deepest level of recursion that could be reached using merge sort to sort the array?
(Hint: recall that merge sort works by dividing ranges in half and recursively sorting them.) In
order to receive any partial credit, briefly explain your answer.

(b) What is the deepest level of recursion that could be reached using quick sort to sort the array?
(Hint: recall that there is an unlikely O(N2) special case.) In order to receive any partial credit,
briefly explain your answer.



Programming Questions

To get started, use a web browser to download the zipfile as specified by your instructor. Import
it as an Eclipse project using File → Import... → General → Existing Projects into Workspace →
Archive file.

Important: You may use the following resources:

• The textbook
• The lecture notes posted on the course web page
• Your previous labs and assignments

Do not open any other files, web pages, etc.

Question 9. [25 points] A “tall” character is one of the lower-case letters b, d, f, h, k, l, or t,
or an upper-case letter. Implement the countTall method so that it returns the number of “tall”
characters in the string passed as the parameter. Important: you must use recursion. Do not use
a loop.

Hints:

• Think about an appropriate base case

• Think about how to find a subproblem

• Think about how to take the recursive solution to the subproblem and extend it to be a
solution to the overall problem

• s.charAt(i) returns the character at index i in the string s

• s.substring(start, end) returns the substring of s from index start (inclusive) to index
end (exclusive)

• s.substring(start) returns the substring of s from index start (inclusive) to the end of
the string

• Character.isUpperCase(c) returns true if a character c is an upper case letter, false other-
wise

Unit tests are provided in Q9Test. Make sure the unit tests pass.

Question 10. [25 points] Complete the implementation of the Stats class. The idea is that each
time the updateStats method is called, information is being provided about the performance of one
player in one particular softball game, specifically the player’s name (player), the game number
(game), and the number of runs scored by that player (numRuns). The updateStats method should
keep track of the total number of runs by each player (over all games), and the total number of
runs in each game (over all players).

Once a Stats object has been populated with data, the getRunsForPlayer and getRunsForGame

methods can be used to get the total number of runs for a particular player or game, respectively.



The stats.csv file contains the raw data. The Q10.readStats method creates a new Stats object,
reads the data from stats.csv, and calls updateStats for each data record in the file. You should
not modify either stats.csv or Q10, but you may find it helpful to refer to them. (To open
stats.csv, right click and choose Open with → Text editor.)

The Q10Test class has unit tests. Make sure all of the unit tests pass.

Hints:

• Use a map of String (player) to Integer (runs) for keeping track of the number of runs for
each player

• Use a map of Integer (game) to Integer (runs) for keeping track of the number of runs for
each game

• updateStats should create or update one entry in each map

• The getRunsForPlayer and getRunsForGame methods should look up the desired number of
runs in the appropriate map


