
 ​Textual Analysis
CS320 - 103: Software Engineering, Spring Semester 2016

Due Date: 2-22-2016

Cara Sperbeck, Alexander Smith, Aaron Walsh

Methods Classes Attributes ​Unused Interfaces

Nouns Verbs
● Account
● Account access
● Board Request
● Color
● Delete
● Email
● Freeform
● Girth
● Google re-captcha
● Hash(password)
● Image
● Invitation
● Paintbrush
● Point
● Public
● Shape
● Tools (shape/select/line/color

select/eraser)
● Whiteboard

● Accept
● Add
● Clear
● Confirm
● Create (account)
● Delete
● Deny
● Draw
● Erase
● Invite (to edit)
● Load
● Login
● Logout
● Notify
● Redo
● Save (account info/whiteboards)
● Select
● Sign up
● Share
● Undo
● Verify

UML Model Explained

Our UML model is split into two major sections: Server and Client. These

segments are used to distinguish between parts of the application that will be
implemented using differing languages and technology. A user interacts directly with the
Client side of the model, which will be implemented in Javascript and will be running in
the user's web browser. The server will be written in some form of Java and run on the
Server computer. The server stores shapes, holds account information, and talks to
other connected clients. When Clients draw, they use tools, which create shape objects,
which are drawn and appear on their whiteboard. The Whiteboard class contains the
drawn shapes and user accounts that are connected and has the behavior to talk
between client and server.

In our Server section of the UML model, the core class is ’Persistent Whiteboard’.
This ‘Persistent Whiteboard’ object contains references to nearly all the other classes
created in our UML analysis. Unlike in the Client model, the data stored here persists
even when the user reloads the page or leaves. The server portion also contains
objects for storing account information and has behaviors related to accounts and their
creation, such as login(), logout(), createAccount(), etc.

In the client section of our UML model, the core class is ‘Whiteboard’ which
handles immediate drawing events from the user and sends them to the “Server
Network Tool” class for the events to be stored in the server. The whiteboard class
contains a list of references to shape objects and tool objects. These objects are sent
in the notify() method to the server to be saved and will persist. There are several
methods related to the drawing canvas, such as undo(), redo() and clearBoard().

The generic shape class in our model takes points and stores them in a list. It

also has a generic method for drawing. This method will be specific to the type of shape
being drawn. These are collections of points with some behaviors as to how they should
be arranged and drawn. We decided to differentiate this from tool, which handles shape
creation because tools do not need to hold reference to the shapes they create. Instead,
the central whiteboard or persistent whiteboard should hold references to the individual
shapes.

Whenever a user draws on a whiteboard they draw using Tools, which record

incoming mouse input and format it. This data is then stored as their respective shape
objects. ‘Tool’ has fields related to how the respective shape is to be drawn in graphics,
such as girth (representing line weight or thickness) and color. The onStartDraw(Point)
method is called to store the first point of a shape and begin a drawing object. Similarly,

the onEndDraw(Point) records the last point of the drawing and closed the shape object.
While the user is drawing, the onRecordDraw(Point) is recording each point as they
move the tool around the Whiteboard canvas. The subclasses of tool must override
these generic methods and insert their own specific behavior related to the type of
shape they are to be creating. The tool object and its respective subclasses are not
present in the server model.

Network tool is a specific type of tool that formats incoming network messages

and packages them into shapes, just like the client side drawing tools. There is one of
these interfaces in each section of the model. It has methods like the on...Draw(Point) in
tool, but instead they are called when a network package comes from either the server
or the client and must be packaged into a shape, like how tool packages shapes.

