
CS 330: Network Applications & Protocols

Department of Engineering and Computer Science

York College of Pennsylvania

CS 330: Network Applications & 

Protocols 
Introduction to Computer Networks & the Internet



CS 330: Network Applications & Protocols

Network layer control plane: our goals

▪understand principles 
behind network control 
plane:

• traditional routing algorithms

• SDN controllers

• network management, 
configuration

• instantiation, 
implementation in the 
Internet:

- OSPF, BGP

- OpenFlow, ODL and ONOS 
controllers

- Internet Control Message 
Protocol: ICMP

- SNMP, YANG/NETCONF

Network Layer: 5-2



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-3

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



CS 330: Network Applications & Protocols

Network-layer functions

Two approaches to structuring network control plane:

• per-router control (traditional)

• logically centralized control (software defined networking)

Network Layer: 5-4

▪ forwarding: move packets from router’s 
input to appropriate router output data plane

control plane▪ routing: determine route taken by 
packets from source to destination



CS 330: Network Applications & Protocols

Per-router control plane

Network Layer: 5-5

Individual routing algorithm components in each and every 
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving 

packet header

3



CS 330: Network Applications & Protocols

Software-Defined Networking (SDN) control plane

Network Layer: 5-6

Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 

packet header



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-7

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



CS 330: Network Applications & Protocols

Routing protocols

Routing protocol goal: determine 

“good” paths (equivalently, routes), from 

sending hosts to receiving host, through 

network of routers

• path: sequence of routers packets 

traverse from given initial source host to 

final destination host

• “good”: least “cost”, “fastest”, “least 

congested”

• routing: a “top-10” networking challenge!

Network Layer: 5-8

mobile network

enterprise
network

national or global ISP

datacenter 
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical



CS 330: Network Applications & Protocols

Graph abstraction: link costs

Network Layer: 5-9

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b

e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 

could always be 1, or inversely 

related to bandwidth, or inversely 

related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (u,w), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



CS 330: Network Applications & Protocols

Routing algorithm classification

Network Layer: 5-10

global or decentralized information?

global: all routers have complete
topology, link cost info

• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with 
neighbors

• routers initially only know link costs to 
attached neighbors

• “distance vector” algorithms

How fast 

do routes 

change?

dynamic: routes 
change more quickly

• periodic updates or in 
response to link cost 
changes

static: routes 
change slowly over 
time



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-11

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



CS 330: Network Applications & Protocols

Dijkstra’s link-state routing algorithm

Network Layer: 5-12

▪ centralized: network topology, 
link costs known to all nodes
• accomplished via “link state 

broadcast” 

• all nodes have same info

▪ computes least cost paths from 
one node (“source”) to all other 
nodes
• gives forwarding table for that node

▪ iterative: after k iterations, know 
least cost path to k destinations

▪ cx,y: direct link cost from 
node x to y;  = ∞ if not 
direct neighbors

▪ D(v): current estimate of 
cost of least-cost-path from 
source to destination v

▪ p(v): predecessor node 
along path from source to v

▪ N': set of nodes whose 
least-cost-path definitively
known

notation



CS 330: Network Applications & Protocols

Dijkstra’s link-state routing algorithm

Network Layer: 5-13

1  Initialization:
2   N' = {u}                       /* compute least cost path from u to all other nodes */

3    for all nodes v
4      if v adjacent to u /* u initially knows direct-path-cost only to  direct neighbors */

5          then D(v) = cu,v /* but may not be minimum cost! */

6      else D(v) = ∞
7 
8   Loop 

9     

10    

11

12

13

14

15  until all nodes in N'

find w not in N' such that D(w) is a minimum 

add w to N'

update D(v) for all v adjacent to w and not in N' : 

D(v) = min ( D(v),  D(w) + cw,v  )

/* new least-path-cost to v is either old least-cost-path to v or known 

least-cost-path to w plus direct-cost from w to v */ 



CS 330: Network Applications & Protocols

Dijkstra’s algorithm: an example

Network Layer: 5-14

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

4,y

D(w),p(w)

4,y3,y

5,u ∞∞1,u2,u

∞2,x4,x2,u
4,y3,y2,u

uxyvwz

uxyvw

uxyv

uxy

ux

u

v w x y z

find a not in N' such that D(a) is a minimum 

add a to N'

update D(b) for all b adjacent to a and not in N' : 

D(b) = min ( D(b), D(a) + ca,b ) 

Initialization (step 0): For all a: if a adjacent to then D(a) = cu,a 



CS 330: Network Applications & Protocols

Dijkstra’s algorithm: an example

Network Layer: 5-15

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all 

other destinations 

via x



CS 330: Network Applications & Protocols

Dijkstra’s algorithm: another example

Network Layer: 5-16

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2

3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v 

uwxvy 12,y 

notes:
▪ construct least-cost-path tree by tracing predecessor nodes

▪ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z



CS 330: Network Applications & Protocols

Dijkstra’s algorithm: discussion

Network Layer: 5-17

algorithm complexity: n nodes

▪ each of n iteration: need to check all nodes, w, not in N

▪ n(n+1)/2 comparisons: O(n2) complexity

▪ more efficient implementations possible: O(nlogn)

message complexity:

▪ each router must broadcast its link state information to other n routers 

▪ efficient (and interesting!) broadcast algorithms: O(n) link crossings to 
disseminate a broadcast message from one source

▪ each router’s message crosses O(n) links: overall message complexity: O(n2)



CS 330: Network Applications & Protocols

Dijkstra’s algorithm: oscillations possible

Network Layer: 5-18

▪ when  link costs depend on traffic volume, route oscillations possible

a

d

c

b

1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

▪ sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1

• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-19

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols
▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



CS 330: Network Applications & Protocols

Distance vector algorithm 

Based on Bellman-Ford (BF) equation (dynamic programming):

Network Layer: 5-20

Let Dx(y): cost of least-cost path from x to y.

Then:

Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



CS 330: Network Applications & Protocols

Bellman-Ford Example

Network Layer: 5-21

u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

cu,x + Dx(z),

cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

1 + 3,

5 + 3}  = 4

node achieving minimum (x) is 
next hop on estimated least-
cost path to destination (z)



CS 330: Network Applications & Protocols

Distance vector algorithm 

Network Layer: 5-22

key idea: 

▪ from time-to-time, each node sends its own distance vector 
estimate to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to 
the actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates 
its own DV using B-F equation:



CS 330: Network Applications & Protocols

Distance vector algorithm:  

Network Layer: 5-23

iterative, asynchronous: each 
local iteration caused by: 

▪ local link cost change 

▪ DV update message from neighbor
wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: 
each node notifies neighbors 
only when its DV changes

▪ neighbors then notify their 
neighbors – only if necessary

▪ no notification received, no 
actions taken!

recompute DV estimates 
using DV received from 

neighbor

if DV to any destination has 
changed, notify neighbors 



CS 330: Network Applications & Protocols

DV in a: 
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector: example

Network Layer: 5-24

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have 
distance 
estimates to 
nearest 
neighbors (only)

A few asymmetries:

▪ missing link

▪ larger cost

d e f

a b c

▪ All nodes send 
their local 
distance vector 
to their 
neighbors



CS 330: Network Applications & Protocols

Distance vector example: iteration

Network Layer: 5-25

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



CS 330: Network Applications & Protocols

Distance vector example: iteration

Network Layer: 5-26

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



CS 330: Network Applications & Protocols

Distance vector example: iteration

Network Layer: 5-27

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=1



CS 330: Network Applications & Protocols

Distance vector example: iteration

Network Layer: 5-28

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2



CS 330: Network Applications & Protocols

Distance vector example: iteration

Network Layer: 5-29

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



CS 330: Network Applications & Protocols

Distance vector example: iteration

Network Layer: 5-30

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their 
new local  
distance vector

▪ send their new 
local distance 
vector to 
neighbors

t=2



CS 330: Network Applications & Protocols

Distance vector example: iteration

Network Layer: 5-31

…. and so on

Let’s next take a look at the iterative computations at nodes



CS 330: Network Applications & Protocols

DV in a: 
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector example: computation

Network Layer: 5-32

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs 
from a, c, e

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞



CS 330: Network Applications & Protocols

Distance vector example: computation

Network Layer: 5-33

DV in a: 
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 



CS 330: Network Applications & Protocols

DV in a: 
Da(a)=0

Da(b) = 8

Da(c) = ∞

Da(d) = 1

Da(e) = ∞

Da(f) = ∞

Da(g) = ∞

Da(h) = ∞

Da(i) = ∞

Distance vector example: computation

Network Layer: 5-34

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞



CS 330: Network Applications & Protocols

Distance vector example: computation

Network Layer: 5-35

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b 
computes:

a b c

d e f

DV in c:

Dc(a) = ∞

Dc(b) = 1

Dc(c) = 0

Dc(d) = ∞

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = 

∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:

Dc(a) = 9

Dc(b) = 1

Dc(c) = 0

Dc(d) = 2

Dc(e) = ∞

Dc(f) = ∞

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = ∞

compute



CS 330: Network Applications & Protocols

Distance vector example: computation

Network Layer: 5-36

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs 
from b, d, f, h

a b c

DV in f:

Dc(a) = ∞

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = ∞

Dc(e) = 1

Dc(f) = 0

Dc(g) = ∞

Dc(h) = ∞

Dc(i) = 1

DV in e:

De(a) = ∞

De(b) = 1

De(c) = ∞

De(d) = 1

De(e) = 0

De(f) = 1

De(g) = ∞

De(h) = 1

De(i) = ∞

DV in h:

Dc(a) = ∞

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = ∞

Dc(e) = 1

Dc(f) = ∞

Dc(g) = 1

Dc(h) = 0

Dc(i) = 1

DV in d:

Dc(a) = 1

Dc(b) = ∞

Dc(c) = ∞

Dc(d) = 0

Dc(e) = 1

Dc(f) = ∞ 

Dc(g) = 1

Dc(h) = ∞

Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in 

e at t=1?

compute



CS 330: Network Applications & Protocols

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and 
may influence distance vector 

computations up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence 

distance vector computations up to 2 hops 
away, i.e., at b and now at a, e as well

t=2

c’s state at t=0 may influence distance 

vector computations up to 3 hops away, 
i.e., at b,a,e and now at c,f,h as well

t=3

c’s state at t=0 may influence distance 

vector computations up to 4 hops away, 
i.e., at b,a,e, c, f, h and now at g,i as well

t=4

Iterative communication, computation steps diffuses information through network: 

t=1 

t=2 

t=3 

t=4 



CS 330: Network Applications & Protocols

Distance vector: link cost changes

Network Layer: 5-38

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its 

neighbors.
t1 : z receives update from y, updates its table, computes new 

least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table.  y’s least 

costs do not change, so y does not send a message to z. 

link cost changes:
▪node detects local link cost change 

▪updates routing info, recalculates local DV

▪ if DV changes, notify neighbors

x z

14

50

y
1



CS 330: Network Applications & Protocols

Distance vector: link cost changes

Network Layer: 5-39

link cost changes:
▪node detects local link cost change 

▪ “bad news travels slow” – count-to-infinity 
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. 
So y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z computes “my new cost 
to x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost 
to x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost 
to x will be 9 via y), notifies y of new cost of 9 to x.

…
▪ see text for solutions.  Distributed algorithms are tricky!



CS 330: Network Applications & Protocols

Comparison of LS and DV algorithms

Network Layer: 5-40

message complexity
LS: n routers, O(n2) messages sent  

DV: exchange between neighbors; 
convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) 

messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if 
router malfunctions, or is 
compromised?

LS: 
• router can advertise incorrect link

cost
• each router computes only its own

table

DV:
• DV router can advertise incorrect 

path cost (“I have a really low cost 
path to everywhere”): black-holing

• each router’s table used by others: 
error propagate thru network



CS 330: Network Applications & Protocols

Distance vector: another example

Network Layer: 5-41

x   y   z

x

y

z

0  2   7

∞ ∞ ∞

∞ ∞ ∞

fr
o

m

cost to

fr
o

m
fr

o
m

x   y   z

x

y

z

0

x   y   z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x   y   z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2   0   1

∞ ∞  ∞

2   0   1

7   1   0

time

x z

12

7

y

Dx()

Dx(y) = min{cx,y + Dy(y), cx,z+ Dz(y)}

= min{2+0 , 7+1} = 2

Dx(z) = min{cx,y+ Dy(z), cx,z+ Dz(z)} 

= min{2+1 , 7+0} = 3

32 

Dy()

Dz()

cost to

fr
o

m



CS 330: Network Applications & Protocols

Distance vector: another example

Network Layer: 5-42

x   y   z

x

y

z

0  2   7

∞ ∞ ∞

∞ ∞ ∞

cost to

fr
o

m
fr

o
m

x   y   z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x   y   z

x

y

z
∞ ∞ ∞

7 1 0

cost to

∞

2   0   1

∞ ∞  ∞

x z

12

7

y

Dx()

Dy()

Dz()

fr
o

m
x   y   z

x

y

z

0  2   3

fr
o

m

cost to

x   y   z

x

y

z

0  2   7
fr

o
m

cost to

x   y   z

x

y

z

0  2   3

fr
o

m

cost to

x   y   z

x

y

z

0  2   3

fr
o
m

cost to
x   y   z

x

y

z

0  2   7

fr
o
m

cost to

2  0   1

7   1   0

2  0   1

3  1   0

2   0   1

3  1   0

2  0   1

3  1   0

2  0   1

3  1   0

fr
o

m

x   y   z

x

y

z

0

2   0   1

7   1   0

32 

cost to

time



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-43

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF
▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



CS 330: Network Applications & Protocols

Making routing scalable

our routing study thus far - idealized 
• all routers identical

• network “flat”

… not true in practice

Network Layer: 5-44

scale: billions of destinations:
▪ can’t store all destinations in 

routing tables!

▪ routing table exchange would 
swamp links!

administrative autonomy:
▪ Internet: a network of networks

▪ each network admin may want to 
control routing in its own network



CS 330: Network Applications & Protocols

Internet approach to scalable routing

aggregate routers into regions known as 

“autonomous systems” (AS) (a.k.a. “domains”)

Network Layer: 5-45

intra-AS (aka “intra-domain”): 
routing among within same AS 
(“network”)
▪ all routers in AS must run same intra-

domain protocol

▪ routers in different AS can run different 
intra-domain routing protocols

▪ gateway router: at “edge” of its own AS, 
has link(s) to router(s) in other AS’es

inter-AS (aka “inter-
domain”): routing among
AS’es

▪ gateways perform inter-domain 
routing (as well as intra-domain 
routing)



CS 330: Network Applications & Protocols

Interconnected ASes

Network Layer: 5-46

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS 

routing

forwarding
table

forwarding table  configured by 
intra- and inter-AS routing 
algorithms

Intra-AS

Routing 
Inter-AS

Routing 

▪ intra-AS routing determine entries for 
destinations within AS

▪ inter-AS & intra-AS determine 
entries for external destinations



CS 330: Network Applications & Protocols

Inter-AS routing: a role in intradomain forwarding

Network Layer: 5-47

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c

2b

1b

3c

other

networks

other

networks

▪ suppose router in AS1 receives 
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable 

through AS2, which through AS3

2. propagate this reachability info to 

all routers in AS1

• router should forward packet 
to gateway router in AS1, but 
which one?



CS 330: Network Applications & Protocols

Intra-AS routing:  routing within an AS

Network Layer: 5-48

most common intra-AS routing protocols:

▪RIP: Routing Information Protocol [RFC 1723]

• classic DV: DVs exchanged every 30 secs

• no longer widely used

▪EIGRP: Enhanced Interior Gateway Routing Protocol
• DV based

• formerly Cisco-proprietary for decades (became open in 2013 [RFC 7868])

▪ OSPF: Open Shortest Path First  [RFC 2328]

• link-state routing

• IS-IS protocol (ISO standard, not RFC standard) essentially same as 
OSPF



CS 330: Network Applications & Protocols

OSPF (Open Shortest Path First) routing

Network Layer: 5-49

▪ “open”: publicly available

▪ classic link-state 
• each router floods OSPF link-state advertisements (directly 

over IP rather than using TCP/UDP) to all other routers in entire 
AS

• multiple link costs metrics possible: bandwidth, delay

• each router has full topology, uses Dijkstra’s algorithm to 
compute forwarding table

▪ security: all OSPF messages authenticated (to prevent malicious 
intrusion) 



CS 330: Network Applications & Protocols

Hierarchical OSPF

Network Layer: 5-50

▪ two-level hierarchy: local area, backbone.

• link-state advertisements flooded only in area, or backbone

• each node has detailed area topology; only knows direction to 
reach other destinations

area border routers: 
“summarize” distances  to 
destinations in own area, 
advertise in backbone

area 1

area 2

area 3

backbone

internal
routers

backbone router: 
runs OSPF 
limited to 
backbone

boundary router: 
connects to other ASes

local routers: 
• flood LS in area only
• compute routing within 

area
• forward packets to outside 

via area border router



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-51

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: 
BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



CS 330: Network Applications & Protocols

Internet inter-AS routing: BGP

▪ BGP (Border Gateway Protocol): the de facto inter-domain routing protocol

• “glue that holds the Internet together”

▪ allows subnet to advertise its existence, and the destinations it can reach, to rest of 
Internet: “I am here, here is who I can reach, and how”

▪ BGP provides each AS a means to:

▪ eBGP: obtain subnet reachability information from neighboring ASes

▪ iBGP: propagate reachability information to all AS-internal routers.

▪ determine “good” routes to other networks based on reachability information and policy

Network Layer: 5-52



CS 330: Network Applications & Protocols

eBGP, iBGP connections

Network Layer: 5-53

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a

AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols



CS 330: Network Applications & Protocols

BGP basics

Network Layer: 5-54

▪ when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
• AS3 promises to AS2 it will forward datagrams towards X

▪ BGP session: two BGP routers (“peers”) exchange BGP messages 
over semi-permanent TCP connection:

• advertising paths to different destination network prefixes (BGP  is a “path 
vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
BGP advertisement:
AS3, X



CS 330: Network Applications & Protocols

Path attributes and BGP routes

Network Layer: 5-55

▪ BGP advertised route:  prefix + attributes 
• prefix: destination being advertised

• two important attributes:
• AS-PATH: list of ASes through which prefix advertisement has passed

• NEXT-HOP: indicates specific internal-AS router to next-hop AS

▪ policy-based routing:
• gateway receiving route advertisement uses import policy to 

accept/decline path (e.g., never route through AS Y).

• AS policy also determines whether to advertise path to other 
other neighboring ASes



CS 330: Network Applications & Protocols

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-56

▪ based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via 

iBGP) to all AS2 routers

AS2,AS3,X 

▪ AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 

3a

▪ based on AS2 policy,  AS2 router 2a advertises (via eBGP)  path AS2, 

AS3, X  to AS1 router 1c

AS3, X



CS 330: Network Applications & Protocols

BGP path advertisement (more)

Network Layer: 5-57

AS2,AS3,X 

▪ AS1 gateway router 1c learns path AS2,AS3,X from 2a

gateway router may learn about multiple paths to destination:

AS3,X

▪ AS1 gateway router 1c learns path AS3,X from 3a

▪ based on policy, AS1 gateway router 1c chooses path AS3,X and 

advertises path within AS1 via iBGP

AS3, X

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
AS3,X

AS3,X

AS3,X



CS 330: Network Applications & Protocols

BGP messages

Network Layer: 5-58

▪ BGP messages exchanged between peers over TCP 
connection

▪ BGP messages:

• OPEN: opens TCP connection to remote BGP peer and 

authenticates sending BGP peer

• UPDATE: advertises new path (or withdraws old)

• KEEPALIVE: keeps connection alive in absence of UPDATES; 

also ACKs OPEN request

• NOTIFICATION: reports errors in previous msg; also used to 

close connection



CS 330: Network Applications & Protocols

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-59

AS2,AS3,X 

AS3,X

AS3, X

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes 
through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  
interface 1

12

1

2

dest interface

…

…

…

…

local link 
interfaces
at 1a, 1d

▪ at 1d: to get to X, use  interface 1

1c 1

X 1

AS3,X

AS3,X

AS3,X



CS 330: Network Applications & Protocols

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

BGP path advertisement

Network Layer: 5-60

▪ recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

▪ at 1d: OSPF intra-domain routing: to get to 1c, use  interface 1

1

2

▪ at 1d: to get to X, use  interface 1

dest interface

…

…

…

…

1c 2

X 2

▪ at 1a: OSPF intra-domain routing: to get to 1c, use  interface 2

▪ at 1a: to get to X, use  interface 2



CS 330: Network Applications & Protocols

Why different Intra-, Inter-AS routing ?

Network Layer: 5-61

policy:

▪ inter-AS: admin wants control over how its traffic routed, who 
routes through its network 

▪ intra-AS: single admin, so policy less of an issue

scale:

▪ hierarchical routing saves table size, reduced update traffic

performance: 

▪ intra-AS: can focus on performance

▪ inter-AS: policy dominates over performance



CS 330: Network Applications & Protocols

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

Hot potato routing

Network Layer: 5-62

▪ 2d learns (via iBGP) it can route to X via 2a or 2c

▪ hot potato routing: choose local gateway that has least intra-domain
cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t 
worry about inter-domain cost!

AS3,X AS1,AS3,X 

OSPF link weights

201

112

263



CS 330: Network Applications & Protocols

BGP: achieving policy via advertisements

Network Layer: 5-63

B

legend:

customer 
network:

provider
network

▪ A advertises path Aw to B and to C

▪ B chooses not to advertise BAw to C!  

▪ B gets no “revenue” for routing CBAw, since none of  C, A, w are B’s 
customers

▪ C does not learn about CBAw path

▪ C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not 

want to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

A,w

A,w



CS 330: Network Applications & Protocols

BGP: achieving policy via advertisements (more)

Network Layer: 5-64

B

ISP only wants to route traffic to/from its customer networks (does not 

want to carry transit traffic between other ISPs – a typical “real world” policy)

w A

yC

x

▪ A,B,C are provider networks

▪ x,w,y are customer (of provider networks)

▪ x is dual-homed: attached to two networks

▪ policy to enforce: x does not want to route from B to C via 
x 

▪ .. so x will not advertise to B a route to C

legend:

customer 
network:

provider
network



CS 330: Network Applications & Protocols

BGP route selection

• router may learn about more than one route to 

destination AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH 

3. closest NEXT-HOP router: hot potato routing

4. additional criteria 

Network Layer: 5-65



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-66

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪SDN control plane
▪ Internet Control Message 

Protocol 



CS 330: Network Applications & Protocols

Software defined networking (SDN)

• Internet network layer: historically implemented via 

distributed, per-router control approach:

- monolithic router contains switching hardware, runs proprietary 

implementation of Internet standard protocols (IP, RIP, IS-IS, 

OSPF, BGP) in proprietary router OS (e.g., Cisco IOS)

- different “middleboxes” for different network layer functions: 

firewalls, load balancers, NAT boxes, ..

• ~2005: renewed interest in rethinking network control 

plane

Network Layer: 5-67



CS 330: Network Applications & Protocols

Per-router control plane

Network Layer: 4-68

Individual routing algorithm components in each and every router 
interact in the control plane to computer forwarding tables

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving 

packet header

3



CS 330: Network Applications & Protocols

Software-Defined Networking (SDN) control plane

Network Layer: 4-69

Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving 

packet header



CS 330: Network Applications & Protocols

Software defined networking (SDN)

Why a logically centralized control plane?

• easier network management: avoid router misconfigurations, greater flexibility of 

traffic flows

• table-based forwarding (recall OpenFlow API) allows “programming” routers

- centralized “programming” easier: compute tables centrally and distribute

- distributed “programming” more difficult: compute tables as result of distributed 

algorithm (protocol) implemented in each-and-every router 

• open (non-proprietary) implementation of control plane

- foster innovation: let 1000 flowers bloom

Network Layer: 5-70



CS 330: Network Applications & Protocols

SDN analogy: mainframe to PC revolution

Network Layer: 5-71

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized

Operating

System

Specialized

Hardware

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

Ap
p

App
Specialized

Applications

Horizontal
Open interfaces
Rapid innovation

Huge industry

Microprocessor

Open Interface

* Slide  courtesy: N. McKeown

or or

Open Interface

Windows Linux MAC OS



CS 330: Network Applications & Protocols

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 5-72

Q: what if network operator wants u-to-z traffic to flow along 

uvwz, rather than uxyz?

A: need to re-define link weights so traffic routing algorithm 

computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!



CS 330: Network Applications & Protocols

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

Traffic engineering: difficult with traditional routing

Network Layer: 5-73

Q: what if network operator wants to split  u-to-z 

traffic along uvwz and uxyz (load balancing)?

A: can’t do it (or need a new routing algorithm)



CS 330: Network Applications & Protocols

Traffic engineering: difficult with traditional routing

Network Layer: 5-74

Q: what if w wants to route blue and red traffic differently from w to z?

A: can’t do it (with destination-based forwarding, and LS, DV routing)

2

2

1
3

1

1

2

5
3

5

v w

u z

yx

We learned in Chapter 4 that generalized forwarding and 

SDN can be used to achieve any routing desired



CS 330: Network Applications & Protocols

Software defined networking (SDN)

Network Layer: 5-75

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1: generalized “flow-based” 
forwarding (e.g., OpenFlow)

2. control, data 
plane separation

3. control plane 
functions external to 
data-plane switches

…routing
access 
control

load
balance4. programmable 

control 
applications



CS 330: Network Applications & Protocols

Software defined networking (SDN)

Network Layer: 5-76

Data-plane switches:

▪ fast, simple, commodity switches 
implementing generalized data-plane 
forwarding (Section 4.4) in hardware

▪ flow (forwarding) table computed, 
installed under controller supervision

▪ API for table-based switch control 
(e.g., OpenFlow)

• defines what is controllable, what is not

▪ protocol for communicating with 
controller (e.g., OpenFlow) data

plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



CS 330: Network Applications & Protocols

Software defined networking (SDN)

Network Layer: 5-77

SDN controller (network OS): 

▪ maintain network state information

▪ interacts with network control 
applications “above” via northbound 
API

▪ interacts with network switches 
“below” via southbound API

▪ implemented as distributed system 
for performance, scalability, fault-
tolerance, robustness

data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



CS 330: Network Applications & Protocols

Software defined networking (SDN)

Network Layer: 5-78

network-control apps:

▪ “brains” of control:  

implement control functions 

using lower-level services, 

API provided by SDN 

controller

▪ unbundled: can be provided 

by 3rd party: distinct from 

routing vendor, or SDN 

controller
data
plane

control
plane

SDN Controller
(network operating system)

…
routing

access 
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control applications



CS 330: Network Applications & Protocols

Components of SDN controller

Network Layer: 5-79

Network-wide distributed, robust  state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables…  

…  

OpenFlow SNMP…  

network 
graph intent

RESTful
API

…  
Interface, abstractions for network control apps

SDN

controller

routing access 
control

load
balance

communication: communicate 
between SDN controller and 
controlled switches

network-wide state management 
: state of networks links, 
switches, services: a distributed 
database

interface layer to network 
control apps: abstractions API



CS 330: Network Applications & Protocols

OpenFlow protocol

Network Layer: 5-80

▪ operates between controller, switch

▪ TCP used to exchange messages

• optional encryption

▪ three classes of  OpenFlow messages:

• controller-to-switch

• asynchronous (switch to controller)

• symmetric (misc.)

▪ distinct from OpenFlow API

• API used to specify  generalized forwarding 

actions

OpenFlow Controller



CS 330: Network Applications & Protocols

OpenFlow: controller-to-switch messages

Network Layer: 5-81

Key controller-to-switch 

messages
▪ features: controller queries switch 

features, switch replies

▪ configure: controller queries/sets 

switch configuration parameters

▪ modify-state: add, delete, modify 

flow entries in the OpenFlow 

tables

▪ packet-out: controller can send this 

packet out of specific switch port

OpenFlow Controller



CS 330: Network Applications & Protocols

OpenFlow: switch-to-controller messages

Network Layer: 5-82

Key switch-to-controller messages
▪ packet-in: transfer packet (and its 

control) to controller.  See packet-out 

message from controller

▪ flow-removed: flow table entry 

deleted at switch

▪ port status: inform controller of a 

change on a port.

Fortunately, network operators don’t “program” switches by creating/sending 

OpenFlow messages directly.  Instead use higher-level abstraction at controller

OpenFlow Controller



CS 330: Network Applications & Protocols

SDN: control/data plane interaction example

Network Layer: 5-83

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph

intent
RESTful

API
…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

S1, experiencing link failure 
uses OpenFlow port status 
message to notify controller

1

SDN controller receives 
OpenFlow message, updates link 
status info

2

Dijkstra’s routing algorithm 
application has previously 
registered to be called when ever 
link status changes.  It is called.

3

Dijkstra’s routing algorithm 
access network graph info, link 
state info in controller,  
computes new routes

4
1

2

3

4



CS 330: Network Applications & Protocols

SDN: control/data plane interaction example

Network Layer: 5-84

Link-state info switch infohost info

statistics flow tables
…  

…  

OpenFlow SNMP
…  

network 
graph

intent
RESTful

API
…  

Dijkstra’s link-state 
routing

s1
s2

s3
s4

link state routing app interacts 
with flow-table-computation 
component in SDN controller, 
which computes new flow 
tables needed

5

controller uses OpenFlow to 
install new tables in switches 
that need updating

6

5

1

2

3

4



CS 330: Network Applications & Protocols

OpenDaylight (ODL) controller

Network Layer: 5-85

Network Orchestrations and Applications

Southbound API

Service 
Abstraction Layer 
(SAL)

config. and 
operational data 

store

REST/RESTCONF/NETCONF 
APIs

messaging

OpenFlow NETCONF SNMP OVSDB …

Northbound API

Traffic 
Engineering …Firewalling Load 

Balancing

Basic Network FunctionsEnhanced 
Services

…

…
Forwardin

g rules 
mgr.

AAA

Host
Tracker

Stats
mgr.

Switch
mgr.

Topolog
y

processin
g

Service Abstraction 
Layer: 

▪ interconnects internal, 
external applications 
and services



CS 330: Network Applications & Protocols

ONOS controller

Network Layer: 5-86

Network Applications

Southbound API

Northbound API

Traffic 
Engineering …Firewalling Load 

Balancing

southbound 
abstractions,
protocolsOpenFlow Netconf OVSDB

device link host flow packet

northbound 
abstractions,
protocols

REST    API Intent

ONOS
distributed 
core

statisticsdevices

hosts

links

paths flow rules topology

▪ control apps separate 
from controller

▪ intent framework: 
high-level specification 
of service: what rather 
than how

▪ considerable 
emphasis on 
distributed core: 
service reliability, 
replication 
performance scaling



CS 330: Network Applications & Protocols

SDN:  selected challenges

• hardening the control plane: dependable, reliable, 
performance-scalable, secure distributed system

- robustness to failures: leverage strong theory of reliable distributed 
system for control plane

- dependability, security: “baked in” from day one? 

• networks, protocols meeting mission-specific requirements

- e.g., real-time, ultra-reliable, ultra-secure

• Internet-scaling: beyond a single AS

• SDN critical in 5G cellular networks

Network Layer: 5-87



CS 330: Network Applications & Protocols

SDN and the future of traditional network protocols

• SDN-computed versus router-computer forwarding 
tables:

- just one example of logically-centralized-computed versus protocol 
computed

• one could imagine SDN-computed congestion control: 

- controller sets sender rates based on router-reported (to controller) 
congestion levels 

Network Layer: 5-88

How will implementation of 
network functionality (SDN 
versus protocols) evolve?



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-89

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control 
Message Protocol 



CS 330: Network Applications & Protocols

ICMP: internet control message protocol

Network Layer: 4-90

▪ used by hosts and routers to 
communicate network-level 
information
• error reporting: unreachable host, 

network, port, protocol

• echo request/reply (used by ping)

▪ network-layer “above” IP:
• ICMP messages carried in IP 

datagrams

▪ ICMP message: type, code plus 
first 8 bytes of IP datagram 
causing error

Type Code description

0        0         echo reply (ping)

3        0         dest. network unreachable

3        1         dest host unreachable

3        2         dest protocol unreachable

3        3         dest port unreachable

3        6         dest network unknown

3        7         dest host unknown

4        0         source quench (congestion

control - not used)

8        0         echo request (ping)

9        0         route advertisement

10      0         router discovery

11      0         TTL expired

12      0         bad IP header



CS 330: Network Applications & Protocols

Traceroute and ICMP

Network Layer: 4-91

▪ when ICMP message arrives at source: record RTTs

stopping criteria:
▪ UDP segment 

eventually arrives at 
destination host

▪ destination returns 
ICMP “port 
unreachable” message 
(type 3, code 3)

▪ source stops

3 probes

3 probes

3 probes

▪ source sends sets of UDP segments to 
destination
• 1st set has TTL =1, 2nd set has TTL=2, etc.

▪ datagram in nth set arrives to nth router:
• router discards datagram and sends source 

ICMP message (type 11, code 0)

• ICMP message possibly includes name of 
router & IP address



CS 330: Network Applications & Protocols

Network layer: “control plane” roadmap

Network Layer: 5-92

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction

▪ routing protocols

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 



CS 330: Network Applications & Protocols

What is network management?

• autonomous systems (aka “network”): 1000s of interacting 
hardware/software components

• other complex systems requiring monitoring, configuration, 
control:

- jet airplane, nuclear power plant, others?

Network Layer: 5-93

"Network management includes the deployment, integration 

and coordination of the hardware, software, and human 

elements to monitor, test, poll, configure, analyze, evaluate, 

and control the network and element resources to meet the 

real-time, operational performance, and Quality of Service 

requirements at a reasonable cost."



CS 330: Network Applications & Protocols

Components of network management

Network Layer: 5-94

managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

Managing server: 
application, typically 
with network
managers (humans) 
in the loop

Managed device: 
equipment with 

manageable, configurable 

hardware, software 

components
Data: device 

“state” 

configuration data, 

operational data, 

device statistics

Network 
management 
protocol: used by 
managing server to 
query, configure, 
manage device; used 
by devices to inform 
managing server of 
data, events.



CS 330: Network Applications & Protocols

Network operator approaches to management

Network Layer: 5-95

managed device
managed device

managed device

managed device

managed device

agent data

agent data

agent data

agent data

agent data

managing
server/controller

data

CLI (Command Line Interface) 

• operator issues (types, scripts) direct to 
individual devices (e.g., vis ssh)

SNMP/MIB 
• operator queries/sets devices data 

(MIB) using Simple Network 
Management Protocol (SNMP)

NETCONF/YANG
• more abstract, network-wide, holistic
• emphasis on multi-device configuration 

management. 
• YANG: data modeling language 
• NETCONF: communicate YANG-

compatible actions/data to/from/among 
remote devices 



CS 330: Network Applications & Protocols

SNMP protocol

Network Layer: 5-96

managed device

agent data

managing
server/controlle

r

data

request

response trap message

Two ways to convey MIB info, commands:

request/response mode

managed device

agent data

managing
server/controlle

r

data

trap mode



CS 330: Network Applications & Protocols

SNMP protocol: message types

Network Layer: 5-97

GetRequest
GetNextRequest
GetBulkRequest

manager-to-agent: “get me data”
(data instance, next data in list, 

block of data). 

Message type Function

SetRequest manager-to-agent: set MIB value

Response Agent-to-manager: value, response 
to Request

Trap Agent-to-manager: inform manager
of exceptional event



CS 330: Network Applications & Protocols

SNMP protocol: message formats

Network Layer: 5-98

….
PDU

type

(0-3)

Request

ID

Error

Status

(0-5)

Error

Index
Name Value Name Value

Get/set header Variables to get/set

SNMP PDU

message types 0-3

….
PDU

type

4

Enterprise
Agent

Addr

Trap

Type

(0-7)

Specific

code
Time

stamp
Name Value

Trap header Trap info

message type 4



CS 330: Network Applications & Protocols

SNMP: Management Information Base (MIB)

• managed device’s operational (and some configuration) data

• gathered into device MIB module

- 400 MIB modules defined in RFC’s; many more vendor-specific MIBs

Network Layer: 5-99

Object ID           Name                      Type                  Comments

1.3.6.1.2.1.7.1     UDPInDatagrams 32-bit counter     total # datagrams delivered 

1.3.6.1.2.1.7.2    UDPNoPorts 32-bit counter     # undeliverable datagrams (no application at port)

1.3.6.1.2.1.7.3    UDInErrors 32-bit counter     # undeliverable datagrams (all other reasons)

1.3.6.1.2.1.7.4    UDPOutDatagrams 32-bit counter    total  # datagrams sent

1.3.6.1.2.1.7.5    udpTable SEQUENCE          one entry for each port currently in use

agent data

▪ Structure of Management Information (SMI): data definition language

▪ example MIB variables for UDP protocol:



CS 330: Network Applications & Protocols

NETCONF overview

• goal: actively manage/configure devices network-wide

• operates between managing server and managed network devices

- actions: retrieve, set, modify, activate configurations

- atomic-commit actions over multiple devices

- query operational data and statistics

- subscribe to notifications from devices

• remote procedure call (RPC) paradigm

- NETCONF protocol messages encoded in XML

- exchanged over secure, reliable transport (e.g., TLS) protocol

Network Layer: 5-100



CS 330: Network Applications & Protocols

NETCONF initialization, exchange, close

Network Layer: 5-101

Session initiation, 
capabilities exchange: <hello>

Session close:  <close-session>

<rpc>

<rpc-reply>

<rpc>

<rpc-reply>

<rpc>

<rpc-reply>

<notification>

…
…

…
…

…

…
…

…
…

managing
server/controller

data

agent data



CS 330: Network Applications & Protocols

Selected NETCONF Operations

Network Layer: 5-102

NETCONF              Operation Description

<get-config>                Retrieve all or part of a given configuration. A device may have multiple 

configurations. 

<get>                            Retrieve all or part of both configuration state and operational state data.

<edit-config>              Change specified (possibly running) configuration at managed device. Managed 

device <rpc-reply> contains <ok>  or <rpcerror> with rollback.

<lock>, <unlock>        Lock (unlock) configuration datastore at managed device (to lock out 

NETCONF, SNMP, or CLIs commands from other sources).

<create-subscription>,    Enable event notification subscription from managed device

<notification>



CS 330: Network Applications & Protocols

Sample NETCONF RPC message

Network Layer: 5-103

note message id

change the running configuration 

change MTU of Ethernet 0/0 interface to 1500

change a configuration



CS 330: Network Applications & Protocols

YANG

• data modeling language used to specify structure, 

syntax, semantics of NETCONF network 

management data

- built-in data types, like SMI

• XML document describing device, capabilities can 

be generated from YANG description

• can express constraints among data that must be 

satisfied by a valid NETCONF configuration

- ensure NETCONF configurations satisfy 

correctness, consistency constraints

Network Layer: 5-104

agent data

managing
server/controlle

r

data

NETCONF RPC 

message<edit-config>

YANG-generated 

XML
</edit-config>

YANG

generated



CS 330: Network Applications & Protocols

Network layer:  Summary

Network Layer: 5-105

we’ve learned a lot!

▪ approaches to network control plane
• per-router control (traditional)
• logically centralized control (software defined networking)

▪ traditional routing algorithms
• implementation in Internet: OSPF , BGP

▪SDN controllers
• implementation in practice: ODL, ONOS

▪ Internet Control Message Protocol

▪ network management

next stop:  link layer!



CS 330: Network Applications & Protocols

Network layer, control plane:  Done!

Network Layer: 5-106

▪ network management, 
configuration 
• SNMP

• NETCONF/YANG

▪ introduction
▪ routing protocols

▪ link state

▪ distance vector

▪ intra-ISP routing: OSPF

▪ routing among ISPs: BGP

▪ SDN control plane

▪ Internet Control Message 
Protocol 


