Dijkstra's Algorithm

Algorithm works as follows:

- Starts by assigning some initial distance value for each node in the graph
 - Distance from node s to itself is 0
 - Distances from node s to all other nodes in graph are initialized to INFINITY
- Operates in steps, where at each step the algorithm improves the distance values for nodes in the graph
- At each step the shortest distance from node *s* to another node in the graph is determined

Dijkstra's Algorithm Example

- Network is represented as a graph
 - Routers are nodes in graph
 - Links are edges in graph
 - Cost of edge is labeled

- Each router computes distance to all other routers in network
 - Example shows computation done by router U

A link-state routing algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to
- N': set of nodes whose least cost path definitively known

Dijsktra's algorithm

```
Initialization:
  N' = \{u\}
   for all nodes v
     if v adjacent to u
       then D(v) = c(u,v)
6
     else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
    add w to N'
     update D(v) for all v adjacent to w and not in N':
12
       D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```


Initialize distances to U:

- Distance to itself is 0
- Distance to all other nodes is ∞

Node	I	Distanc	Path		
U	0				
V	8				
W	8				
X	8				
Υ	8				
Z	∞				

Select node with shortest distance to U (currently U) and determine shortest distance of its neighbors from U

- If node is unreachable it is still ∞
- Record the path

Node		Distanc	Path		
U	0	-			-
V	8	2			$U \rightarrow V$
W	∞	5			U → W
X	8	1			U → X
Υ	8	8			-
Z	∞	∞			-

Select node with shortest distance to U (currently X) and determine shortest distance of its neighbors from U

Node	[Distanc	Path			
U	0	-	1			-
V	\otimes	2	2			$U \rightarrow V$
W	8	5	4			$U \rightarrow X \rightarrow W$
X	8	1	1			U → X
Υ	∞	8	2			$U \rightarrow X \rightarrow Y$
Z	∞	∞	∞			-

Select node with shortest distance to U (currently X) and determine shortest distance of its neighbors from U

Node	[Distanc	Path			
U	0	1	-	-		-
V	∞	2	2	-		U → V
W	∞	5	4	4		$U \rightarrow X \rightarrow W$
Х	∞	1	-	-		U → X
Υ	∞	8	2	2	 	$U \rightarrow X \rightarrow Y$
Z	∞	∞	∞	∞		-

Select node with shortest distance to U (currently Y) and determine shortest distance of its neighbors from U

Node	[Distanc	Path				
U	0	-	-	1	-		-
V	∞	2	2	1	-		U → V
W	∞	5	4	4	3		$U \rightarrow X \rightarrow Y \rightarrow W$
Х	∞	1	-	-	-		U → X
Υ	∞	∞	2	2	-		$U \rightarrow X \rightarrow Y$
Z	∞	∞	∞	8	4		$U \to X \to Y \to Z$

Select node with shortest distance to U (currently W) and determine shortest distance of its neighbors from U

Node		Distanc	Path				
U	0	- 1	-	-	-	-	-
V	∞	2	2	-	-	-	U → V
W	∞	5	4	4	3	-	$U \rightarrow X \rightarrow Y \rightarrow W$
Х	∞	1	-	-	-	-	U → X
Υ	∞	∞	2	2	-	-	$U \rightarrow X \rightarrow Y$
Z	∞	8	∞	∞	4	4	$U \to X \to Y \to Z$

Select node with shortest distance to U (currently Z) and determine shortest distance of its neighbors from U

 All nodes have been accounted for, so terminate

Node	I	Distanc	Path				
U	0	-	-	1	-	1	-
V	∞	2	2	-	-	-	U → V
W	∞	5	4	4	3	-	$U \rightarrow X \rightarrow Y \rightarrow W$
X	∞	1	-	-	-	-	U → X
Υ	∞	∞	2	2	-	-	$U \rightarrow X \rightarrow Y$
Z	∞	∞	8	8	4	4	$U \to X \to Y \to Z$