
CS 335: Special Topic in Cyber Security

Buffer Overflow Attack

CS 335: Special Topic in Cyber Security

WhatsApp

2

CS 335: Special Topic in Cyber Security

WhatsApp

3

CS 335: Special Topic in Cyber Security

Outline

● Understanding of Stack Layout

● Vulnerable code

● Challenges in exploitation

● Shellcode

● Countermeasures

CS 335: Special Topic in Cyber Security

Program Memory Stack

ptr points to

the memory

here

a,b, ptr

y

x

5

CS 335: Special Topic in Cyber Security

Virtual Memory

6

CS 335: Special Topic in Cyber Security

Order of the function arguments in stack

7

CS 335: Special Topic in Cyber Security

Function Call Stack

void f(int a, int b)

{

int x;

}

void main()

{

f(1,2);

printf("hello world");

}

8

CS 335: Special Topic in Cyber Security

Stack Layout for Function Call Chain

main()

foo()

bar()

9

CS 335: Special Topic in Cyber Security

Another View

10

CS 335: Special Topic in Cyber Security

Vulnerable Program

● Reading 300 bytes of data from

badfile.

● Storing the file contents into a str

variable of size 400 bytes.

● Calling foo function with str as an

argument.

Note : badfile is created by the user

and hence the contents are in control

of the user.

11

CS 335: Special Topic in Cyber Security

Vulnerable Program

12

CS 335: Special Topic in Cyber Security

Consequences of Buffer Overflow

Overwriting return address with some random address can point to :

• Invalid instruction

• Non-existing address

• Access violation

• Attacker’s code Malicious code to gain access

13

CS 335: Special Topic in Cyber Security

How to Run Malicious Code

14

CS 335: Special Topic in Cyber Security

Environment Setup

15

CS 335: Special Topic in Cyber Security

Creation of The Malicious Input (badfile)

Task A : Find the offset distance between the base of the buffer and return

address.

Task B : Find the address to place

the shellcode

16

CS 335: Special Topic in Cyber Security

Task A : Distance Between Buffer Base Address and Return

Address

Using GDB

1.Set breakpoint

(gdb) b bof

(gdb) run

2.Print buffer address

(gdb) p &buffer

3.Print frame pointer address

(gdb) p $ebp

4.Calculate distance

(gdb) p 0x02 – 0x01

5.Exit (quit)

● Breakpoint at vulnerable function using

gdb

● Find the base address of buffer

● Find the address of the current frame

pointer (ebp)

● Return address is $ebp +4

CS 335: Special Topic in Cyber Security

Task A : Distance Between Buffer Base Address and Return

Address

Therefore, the distance is 108 + 4 = 112

18

CS 335: Special Topic in Cyber Security

Task B : Address of Malicious Code

• Investigation using gdb

• Malicious code is

written in the badfile

which is passed as an

argument to the

vulnerable function.

• Using gdb, we can find

the address of the

function argument.

19

CS 335: Special Topic in Cyber Security

Task B : Address of Malicious Code

• To increase the chances of

jumping to the correct address,

of the malicious code, we can fill

the badfile with NOP instructions

and place the malicious code at

the end of the buffer.

Note : NOP- Instruction that does

nothing.

20

CS 335: Special Topic in Cyber Security

Badfile Construction

2
1 2

: Obtained from

Task A - distance of

the return address

from the base of the

buffer.

: Obtained from

Task B - Address of

the malicious code.

1

2

CS 335: Special Topic in Cyber Security

The Structure of badfile

22

CS 335: Special Topic in Cyber Security

New Address in Return Address

Considerations :

The new address in the return address of function stack [0xbffff188 + nnn] should not

contain zero in any of its byte, or the badfile will have a zero causing strcpy() to end

copying.

e.g., 0xbffff188 + 0x78 = 0xbffff200, the last byte contains zero leading to end

copy.

23

CS 335: Special Topic in Cyber Security

Execution Results

• Compiling the vulnerable code with all the countermeasures disabled.

• Compiling the exploit code to generate the badfile.

• Executing the exploit code and stack code.

24

CS 335: Special Topic in Cyber Security

A Note on Countermeasure

• On Ubuntu16.04, /bin/sh points to /bin/dash, which has a countermeasure

- It drops privileges when being executed inside a setuid process

• Point /bin/sh to another shell (simplify the attack)

• Change the shellcode (defeat this countermeasure)

• Other methods to defeat the countermeasure will be discussed later

25

CS 335: Special Topic in Cyber Security

Shellcode

Aim of the malicious code : Allow to run more commands (i.e) to gain access of the

system.

Solution : Shell Program

Challenges :

- Loader Issue

- Zeros in the code

26

CS 335: Special Topic in Cyber Security

Shelllcode

• Assembly code (machine instructions) for launching a shell.

• Goal: Use execve(“/bin/sh”, argv, 0) to run shell

• Registers used:

eax = 0x0000000b (11) : Value of system call execve()

ebx = address to “/bin/sh”

ecx = address of the argument array.

- argv[0] = the address of “/bin/sh”

- argv[1] = 0 (i.e., no more arguments)

edx = zero (no environment variables are passed).

int 0x80: invoke execve()

27

CS 335: Special Topic in Cyber Security

Shellcode

%eax = 0 (avoid 0 in code)

set end of string “/bin/sh”

28

CS 335: Special Topic in Cyber Security

Shellcode

29

CS 335: Special Topic in Cyber Security

Countermeasures

Developer approaches:

• Use of safer functions like strncpy(), strncat() etc, safer dynamic

link libraries that check the length of the data before copying.

OS approaches:

• ASLR (Address Space Layout Randomization)

Compiler approaches:

• Stack-Guard

Hardware approaches:

• Non-Executable Stack

30

CS 335: Special Topic in Cyber Security

Principle of ASLR

Difficult to guess %ebp address and address of the malicious code

Difficult to guess the stack address in the memory.

To randomize the start location of the stack that is every time the code
is loaded in the memory, the stack address changes.

31

CS 335: Special Topic in Cyber Security

Address Space Layout Randomization

32

CS 335: Special Topic in Cyber Security

Address Space Layout Randomization : Working

1

3

2

33

CS 335: Special Topic in Cyber Security

ASLR : Defeat It

1. Turn on address randomization (countermeasure)

% sudo sysctl -w kernel.randomize_va_space=2

2. Compile set-uid root version of stack.c

% gcc -o stack -z execstack -fno-stack-protector stack.c

% sudo chown root stack

% sudo chmod 4755 stack

34

CS 335: Special Topic in Cyber Security

ASLR : Defeat It

3. Defeat it by running the vulnerable code in an infinite loop.

35

CS 335: Special Topic in Cyber Security

ASLR : Defeat it

On running the script for about 19 minutes on a 32-bit Linux machine, we got the access

to the shell (malicious code got executed).

36

CS 335: Special Topic in Cyber Security

Stack guard

37

CS 335: Special Topic in Cyber Security

Execution with StackGuard

Canary check done by compiler.

38

CS 335: Special Topic in Cyber Security

Defeating Countermeasures in bash & dash

• They turn the setuid process into a non-setuid process

- They set the effective user ID to the real user ID, dropping the privilege

• Idea: before running them, we set the real user ID to 0

- Invoke setuid(0)

- We can do this at the beginning of the shellcode

39

CS 335: Special Topic in Cyber Security

Non-executable stack

• NX bit, standing for No-eXecute feature in CPU separates code from data which marks

certain areas of the memory as non-executable.

• This countermeasure can be defeated using a different technique called Return-to-libc

attack.

40

CS 335: Special Topic in Cyber Security

Summary

• Buffer overflow is a common security flaw

• We only focused on stack-based buffer overflow

- Heap-based buffer overflow can also lead to code injection

• Exploit buffer overflow to run injected code

• Defend against the attack

41

