
CS 335: Special Topic in Cyber Security

Cross-Site Scripting Attack
(XSS)

CS 335: Special Topic in Cyber Security

Outline

● The Cross-Site Scripting attack

● Reflected XSS

● Persistent XSS

● Damage done by XSS attacks

● XSS attacks to befriend with others

● XSS attacks to change other people’s profiles

● Self-propagation

● Countermeasures

2

CS 335: Special Topic in Cyber Security

The Cross-Site Scripting Attack

● In XSS, an attacker injects

his/her malicious code to the

victim’s browser via the

target website.

● When code comes from a

website, it is considered as

trusted with respect to the

website, so it can access and

change the content on the

pages, read cookies

belonging to the website and

sending out requests on

behalf of the user.

● Basically, code can do whatever the user

can do inside the session.

3

CS 335: Special Topic in Cyber Security

Types of XSS Attacks

● Non-persistent (Reflected) XSS Attack

o Clicking a specially crafted link

● Persistent (Stored) XSS Attack

o Visiting a web page with malicious code

✓ User’s web browser or computer does not have to be susceptible to any well-

known vulnerability

✓ No amount of patching will help users

✓ Solely dependent on a website’s security

4

CS 335: Special Topic in Cyber Security

Non-persistent (Reflected) XSS Attack

If a website with a reflective behaviour

takes user inputs, then :

● Attackers can put JavaScript

code in the input, so when the

input is reflected back, the

JavaScript code will be injected

into the web page from the

website.

5

CS 335: Special Topic in Cyber Security

Non-persistent (Reflected) XSS Attack

● Assume a vulnerable service on website :

http://www.example.com/search?input=word, where word is provided by the users.

● Now the attacker sends the following URL to the victim and tricks him to click the link:

http://www.example.com/search?input=<script>alert(“attack”);</script>

● Once the victim clicks on this link, an HTTP GET request will be sent to the

www.example.com web server, which returns a page containing the search result,

with the original input in the page. The input here is a JavaScript code which runs and

gives a pop-up message on the victim’s browser.

6

http://www.exame.com/search?input=word
http://www.example.com/search?input=%3cscript%3ealert(“attack”);%3c/script
http://www.example.com

CS 335: Special Topic in Cyber Security

Persistent (Stored) XSS Attack

● Attackers directly send their data

to a target website/server which

stores the data in a persistent

storage.

● If the website later sends the

stored data to other users, it

creates a channel between the

users and the attackers.

Example : User profile in a social

network is a channel as it is set by one

user and viewed by another.

7

CS 335: Special Topic in Cyber Security

Persistent (Stored) XSS Attack

● These channels are supposed to be data channels.

● But data provided by users can contain HTML markups and JavaScript code.

● If the input is not sanitized properly by the website, it is sent to other users’ browsers

through the channel and gets executed by the browsers.

● Browsers consider it like any other code coming from the website. Therefore, the

code is given the same privileges as that from the website.

8

CS 335: Special Topic in Cyber Security

Damage Caused by XSS

Web defacing: JavaScript code can use DOM APIs to access the DOM nodes inside the

hosting page. Therefore, the injected JavaScript code can make arbitrary changes to the

page. Example: JavaScript code can change a news article page to something fake or

change some pictures on the page.

Spoofing requests: The injected JavaScript code can send HTTP requests to the server on

behalf of the user. (Discussed in later slides)

Stealing information: The injected JavaScript code can also steal victim’s private data

including the session cookies, personal data displayed on the web page, data stored

locally by the web application.

9

CS 335: Special Topic in Cyber Security

Environment Setup

● Elgg: open-source web application for social networking with disabled

countermeasures for XSS.

● Elgg website : http://www.xsslabelgg.com

● The website is hosted on localhost via Apache’s Virtual Hosting

10

http://www.csrflabelgg.com

CS 335: Special Topic in Cyber Security

Attack Surfaces for XSS attack

● To launch an attack, we need to find places where we can inject JavaScript code.

● These input fields are potential attack surfaces wherein attackers can put JavaScript

code.

● If the web application doesn’t remove the code, the code can be triggered on the

browser and cause damage.

● In our task, we will insert our code in the “Brief Description” field, so that when Alice

views Samy’s profile, the code gets executed with a simple message.

11

CS 335: Special Topic in Cyber Security

XSS Attacks to Befriend with Others

Goal: Add Samy to other people’s friend list without their consent.

Investigation taken by attacker Samy:

● Samy clicks “add-friend” button from Charlie’s account (discussed in

CSRF) to add himself to Charlie’s friend list.

● Using Wireshark, he captures the add-friend request.

12

CS 335: Special Topic in Cyber Security

XSS Attacks to Befriend with Others

Line ①: URL of Elgg’s

add-friend request.

UserID of the user to be

added to the friend list is

used. Here, Samy’s

UserID (GUID) is 47.

Line ②: Elgg’s

countermeasure against

CSRF attacks (this is now

enabled).
Line ③: Session cookie which is unique for each user. It is

automatically sent by browsers. Here, if the attacker wants to

access the cookies, it will be allowed as the JavaScript code is

from Elgg website and not a third-party page like in CSRF.

13

CS 335: Special Topic in Cyber Security

XSS Attacks to Befriend with Others

The main challenge is to find the values of CSRF countermeasures parameters : _elgg_ts and

_elgg_token.

Line ① and ②: The secret values are assigned to two JavaScript variables, which

make our attack easier as we can load the values from these variables.

Our JavaScript code is injected inside the page, so it can access the JavaScript

variables inside the page.

14

CS 335: Special Topic in Cyber Security

Construct an Add-friend Request

Line ① and ②: Get

timestamp and secret

token from the JavaScript

variables.

Line ③ and ④:

Construct the URL with

the data attached.

The rest of the code is to

create a GET request

using Ajax.

15

CS 335: Special Topic in Cyber Security

Inject the Code Into a Profile

● Samy puts the script in the

“About Me” section of his

profile.

● After that, let’s login as

“Alice” and visit Samy’s

profile.

● JavaScript code will be run

and not displayed to Alice.

● The code sends an add-

friend request to the server.

● If we check Alice’s friends

list, Samy is added.

16

CS 335: Special Topic in Cyber Security

XSS Attacks to Change Other People’s Profiles

Goal: Putting a statement “SAMY is MY HERO” in other people’s profile without their

consent.

Investigation taken by attacker Samy :

● Samy captured an edit-profile request using Wireshark or browser developer tools.

17

CS 335: Special Topic in Cyber Security

Captured HTTP Request

Line ①: URL of the edit-

profile service.

Line ②: Session cookie

(unique for each user). It

is automatically set by

browsers.

Line ③: CSRF

countermeasures, which

are now enabled.

18

CS 335: Special Topic in Cyber Security

Captured HTTP Request (continued)

• Line ④: Description field with our text “Samy is my hero”

• Line ⑤: Access level of each field: 2 means the field is viewable to everyone.

• Line ⑥: User ID (GUID) of the victim. This can be obtained by visiting victim’s

profile page source. In XSS, as this value can be obtained from the page. As

we don’t want to limit our attack to one victim, we can just add the GUID from
JavaScript variable called elgg.session.user.guid.

19

CS 335: Special Topic in Cyber Security

Construct the Malicious Ajax Request

20

CS 335: Special Topic in Cyber Security

Construct the Malicious Ajax Request

To ensure that it does not modify Samy’s

own profile or it will overwrite the malicious

content in Samy’s profile.

21

CS 335: Special Topic in Cyber Security

Inject the into Attacker’s Profile

• Samy can place the malicious code into his profile and then wait for others to visit his

profile page.

• Login to Alice’s account and view Samy’s profile. As soon as Samy’s profile is loaded,

malicious code will get executed.

• On checking Alice profile, we can see that “SAMY IS MY HERO” is added to the “About

me” field of her profile.

22

CS 335: Special Topic in Cyber Security

Self-Propagation XSS Worm

Using Samy’s worm, not only will the visitors of Samy’s profile be modified, their profiles can

also be made to carry a copy of Samy’s JavaScript code. So, when an infected profile was

viewed by others, the code can further spread.

Challenges: How can JavaScript code produce a copy of itself?

Two typical approaches:

● DOM approach: JavaScript code can get a copy of itself directly from DOM via DOM

APIs

● Link approach: JavaScript code can be included in a web page via a link using the src

attribute of the <script> tag.

23

CS 335: Special Topic in Cyber Security

Self -Propagation XSS Worm

24

CS 335: Special Topic in Cyber Security

Self-Propagation XSS Worm

Document Object Model (DOM) Approach :

● DOM organizes the contents of the page into a tree of objects (DOM nodes).

● Using DOM APIs, we can access each node on the tree.

● If a page contains JavaScript code, it will be stored as an object in the tree.

● So, if we know the DOM node that contains the code, we can use DOM APIs to get the

code from the node.

● Every JavaScript node can be given a name and then use the
document.getElementByID() API to find the node.

25

CS 335: Special Topic in Cyber Security

Self-Propagation XSS Worm

● Use document.getElementById(“worm”) to get the reference of the

node

● innerHTML gives the inside part of the node, not including the script tag.

● So, in our attack code, we can put the message in the description field along

with a copy of the entire code.

26

CS 335: Special Topic in Cyber Security

Self-Propagation XSS Worm

Line ① and ②: Construct a copy of the worm code, including the script tags.

Line ②: We split the string into two parts and use “+” to concatenate them

together. If we directly put the entire string, Firefox’s HTML parser will consider the

string as a closing tag of the script block and the rest of the code will be ignored.

27

CS 335: Special Topic in Cyber Security

Self-Propagation XSS Worm

Line ③: In HTTP POST requests, data is sent with Content-Type as
“application/x-www-form-urlencoded”. We use

encodeURIComponent() function to encode the string.

Line ④: Access level of each field: 2 means public.

After Samy places this self-propagating code in his profile, when Alice visits

Samy’s profile, the worm gets executed and modifies Alice’s profile, inside

which, a copy of the worm code is also placed. So, any user visiting Alice’s

profile will too get infected in the same way.

28

CS 335: Special Topic in Cyber Security

Self-Propagation XSS Worm: The Link Approach

● The JavaScript code

xssworm.js will be

fetched from the URL.

● Hence, we do not need

to include all the worm

code in the profile.

● Inside the code, we need

to achieve damage and

self-propagation.

29

CS 335: Special Topic in Cyber Security

Countermeasures: the Filter Approach

● Removes code from user inputs.

● It is difficult to implement as there are many ways to embed code other than <script>

tag.

● Use of open-source libraries that can filter out JavaScript code.

● Example : jsoup

30

CS 335: Special Topic in Cyber Security

Countermeasures: The Encoding Approach

● Replaces HTML markups with alternate representations.

● If data containing JavaScript code is encoded before being sent to the browsers, the

embedded JavaScript code will be displayed by browsers, not executed by them.

● Converts <script> alert(‘XSS’) </script> to <script>
alert(‘XSS’) </script>

31

CS 335: Special Topic in Cyber Security

Countermeasures: Elgg’s Approach

PHP module HTMLawed:

Highly customizable PHP script to sanitize HTML against XSS attacks.

PHP function htmlspecialchars:

Encode data provided by users, such that JavaScript code in user’s inputs will be

interpreted by browsers only as strings and not as code.

32

CS 335: Special Topic in Cyber Security

Defeating XSS using Content Security Policy

• Fundamental Problem: mixing data and code (code is inlined)

• Solution: Force data and code to be separated:

(1) Don’t allow the inline approach.

(2) Only allow the link approach.

33

CS 335: Special Topic in Cyber Security

CSP Example

• Policy based on the origin of the code

- Code from self, example.com, and google will be allowed.

34

CS 335: Special Topic in Cyber Security

How to Securely Allow Inlined Code

• Using nonce

• Using hash of the code

Allowed

Not allowed

35

CS 335: Special Topic in Cyber Security

Setting CSP Rules

36

CS 335: Special Topic in Cyber Security

Discussion Questions

Question 1: What are the main differences of CSRF and XSS attacks? They both have “cross

site” in their names.

Question 2: Can we use the countermeasures against CSRF attacks to defend against XSS

attacks, including the secret token and same-site cookie approaches?

37

CS 335: Special Topic in Cyber Security

The Best Defense

• Users

- Exercise caution when clicking on links sent by email or instant messages.

- When visiting questionable sites, disable JavaScript.

- Keep browser up to date, consider browser add-ons (NoScript extension).

• Developers

- Focus of rock solid Input Validation on all content.

- Implement session token, CAPTCHA & HTTP referrer checking where appropriate.

- User supplied HTML should maintain only a minimum set of [safe] tags and absolutely no Java

Script.

• HttpOnly cookie

38

CS 335: Special Topic in Cyber Security

Summary

• Two types of XSS attacks

• How to launch XSS attacks

• Create a self-propagating XSS worm

• Countermeasures against XSS attacks

39

