
CS 340, Fall 2015 — Dec 17th/19th — Final Name:

Note: in all questions, the special symbol ε (epsilon) is used to indicate the empty string.

Question 1. [5 points] Consider the following regular expression:

ab(cc|bc)*a(cc)*

For each of the following strings, circle the string if it is in the language generated by the regular
expression, or cross it out if it is not in the language.

• ε

• ab

• aba

• abccacc

• abbca

• abccbc

• abbccc

• abacc

• abcacc

• abbccca

Question 2. [5 points] Write a regular expression that generates the language of all strings
containing an even number of a’s and an odd number of b’s.

Examples of strings in the language:

• b

• bbb

• aab

• aba

• ababbaa

Examples of strings not in the language:

• ε

• ab

• aa

• bbab

• baab

Question 3. [5 points] Write a regular expression that generates the language of all strings
containing symbols from the alphabet {a, b, c} not containing the substring bb.

Examples of strings in the language:

• ε

• a

• b

• ab

• cbabaaccb

Examples of strings not in the language:

• bb

• bbc

• abbbac

• bba

• acabba

Question 4. [5 points] Specify a deterministic finite automaton (DFA) that recognizes the lan-
guage described in Question 3. Make sure that you clearly indicate the start state and final state(s),
and the direction and symbol for each transition.

Question 5. [10 points] Consider the following nondeterministic finite automaton (NFA):

a

b

ε

c

ε

a

a
q0

q1 q2

q3 q4

q5

(a) What feature or features make this automaton nondeterministic?

(b) Convert this NFA to a deterministic finite automaton (DFA). Show the table mapping each
reachable set of NFA states to the corresponding DFA state.

Question 6. [5 points] Consider the following finite automaton:

b

a

a c

b

q0

q1 q2

q3

Show how to modify this finite automaton so that there is a single final state, without changing
the language that the automaton recognizes. Hint: the modified automaton does not need to be
deterministic.

Question 7. [5 points] Specify a context-free language (CFG) that generates the language of all
strings containing symbols from the alphabet {a, b, c} containing the same number of a’s and b’s.

Examples of strings in the language:

• ε

• c

• ab

• ba

• abcab

Examples of strings not in the language:

• bba

• bc

• aba

• acaba

In your CFG, use capital letters to represent nonterminal symbols. Make sure that each production
has a single nonterminal symbol on the left-hand side. Indicate which nonterminal symbol is the
start symbol.

Question 8. [10 points] Consider the following context-free grammar (CFG), which uses nonter-

minal symbols V L M and terminal symbols () a b , where V is the start symbol:

V → (L)
V → a
V → b

L → M
L → ε
M → V M
M → V

(a) Show a derivation for the string (a (b a)) . Continue on the right-hand side if necessary.

String Production

V

String Production

(b) Draw the parse tree for the derivation you found in part (a). Make sure that each node
represents a single nonterminal or terminal symbol.

Programming Questions

First things first: the following web page specifies which resources you may use during the exam,
and links to the permitted resources:

http://ycpcs.github.io/cs340-fall2015/assign/final.html

Start by downloading the exam zipfile using the command

wget zipfileURL

where zipfileURL is the URL of the exam zipfile.

Import the zipfile as an Eclipse project. The project will be called cs340-final. You will be
editing the file src/cs340 final/core.clj.

There are four functions to complete: frobnicate, make-doubler, combine-pairs, and weighted-
average. Each has a detailed comment explaining the requirements, expected behavior, and a point
value.

Make sure you meet all of the requirements of each function: e.g., if the function is required to be
tail recursive, make sure your function is tail recursive.

Some general hints:

• (empty? s) tests whether sequence s is empty

• (first s) gets the first element in sequence s

• (second s) gets the second element in sequence s

• (rest s) gets a sequence with all but the first element of sequence s

• [] is an empty vector

• (conj v elt) creates a vector which results from appending elt onto the vector v

• (conj v elt1 elt2) returns a vector which results from appending elt1 and elt2 onto the
vector v

• (concat s1 s2) returns a sequence containing all of the elements of sequence s1 followed by
all of the elements of sequence s2

You can run the command lein test in a terminal window to run unit tests.

When you are done, submit your code using the blue up arrow icon (Submit project) in Eclipse, or
run the command make submit. Type your Marmoset username and password when prompted.

Most importantly:

Have fun!

