CS 340, Fall 2016 - Sep 29th - Exam 1 Name: Solution
Note: in all questions, the special symbol ϵ (epsilon) is used to indicate the empty string.

Question 1. [10 points] Specify a regular expression that generates the language over the alphabet $\{\mathbf{a}, \mathbf{b}\}$ of all strings that end in either aba or $\mathbf{b a b}$.

Examples of strings in the language: Examples of strings not in the language:

aba	ϵ
hab	ab
aba	ba
abbabab	baba
bbbbaba	ababba

$$
(a \mid b)^{*}(a b a \mid b a b)
$$

Question 2. [10 points] Specify a regular expression that generates the language over the alphabet $\{\mathbf{a}, \mathbf{b}\}$ of all strings with an even number of $\mathbf{b s}$.

Examples of strings in the language:
Examples of strings not in the language:
b
bbb
aba
abbaba
bbababab

$$
a^{*}\left(a^{*} b a^{*} b a^{*}\right)^{*} a^{*}
$$

Question 3. [10 points] Create a deterministic finite automaton (DFA) that recognizes the language described in Question 1. (See that question for examples of strings in the language and not in the language.) Make sure you indicate the start state and the final state(s), and that each transition has a direction and is labeled with exactly one input symbol.

Question 4. [10 points] Consider the following two DFAs:

Show a finite automaton that recognizes the union of the languages recognized by these two automata. In other words, any string that is accepted by either of the automata should be accepted, and any string that is rejected by both automata should be rejected. Hint: your automaton does

Question 5. [10 points] Consider the following nondeterministic finite automaton (NFA):

Convert this NFA into a deterministic finite automaton (DFA). Show the table mapping each reachable set of NFA states to an equivalent DFA state. Make sure your DFA indicates the start state, final states), and that each transition indicates a direction and is labeled with exactly one input symbol.

Question 6. [10 points] Create a context-free grammar (CFG) for the language of ALists. The terminal symbols are $(\mathbf{)}, \mathbf{a}$. An AList is a pair of balanced parentheses containing a commaseparated list of one or more AItems. Each AItem is either the terminal symbol a or an List.

Examples of strings in the language:

```
(a)
(a,a )
(a,(a))
((a))
((a,(a,a)),(a))
```

Examples of strings not in the language:
ϵ
a
()
((a)
(a)

Make sure to indicate what the start symbol of your grammar is. L is the start symbol

Question 7. [20 points] Consider the following context free grammar with the terminal symbols abl 2+- and the nonterminal symbol E, which is the start symbol:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathbf{a} \\
& \mathrm{E} \rightarrow \mathbf{b} \\
& \mathrm{E} \rightarrow \mathbf{1} \\
& \mathrm{E} \rightarrow \mathbf{2} \\
& \mathrm{E} \rightarrow \mathrm{E} \mathrm{E}+ \\
& \mathrm{E} \rightarrow \mathrm{E}-
\end{aligned}
$$

(a) Show a derivation of the input string 1 a $2+\mathrm{b}-2++$. (Continue on the right-hand side if necessary.)

(b) Draw the parse tree for the derivation you found in part (a).

Question 8. [10 points] Consider the following productions on the nonterminal symbol G:

$$
\begin{aligned}
& \mathrm{G} \rightarrow \mathrm{aP} \\
& \mathrm{G} \rightarrow \mathrm{~b} \mathrm{Q} \\
& \mathrm{G} \rightarrow \mathrm{c}
\end{aligned}
$$

Assume that \mathbf{a}, \mathbf{b}, and \mathbf{c} are terminal symbols and G, P, and Q are nonterminal symbols.
Show the pseudo-code for a recursive descent parse function for the nonterminal G (ie., a parse function).

Important: Show how to use the lexical analyzer to choose between the possible productions. Also, show how to raise an error if no production can be applied.
throw new Parser Exception

$$
\begin{aligned}
& \text { parse } G()\{ \\
& +=\text { lexer.peek() } \\
& \text { if }(t==' a \text { ') \{ } \\
& \text { lexer. next() } \\
& \text { \}else if }\left(t==^{\prime} b{ }^{\prime}\right)\{ \\
& \text { lexer.next () } \\
& \begin{array}{c}
\text { pare } Q() \\
\text { \}else if }\left(t=={ }^{\prime} C^{\prime}\right)\{ \\
\text { lexer.next }(C)
\end{array} \\
& \} \text { else \{ }
\end{aligned}
$$

Question 9. [10 points] Design a Turing Machine that takes a string of a and b symbols as input, and accepts the input (by halting) if and only if there are more occurrences of a than occurrences of \mathbf{b}.

For example, the strings aba and aababba would be accepted, but the strings abb and aababb would be rejected.
(a) Start by stating in words how you could make such a Turing Machine work.

$$
\begin{aligned}
& \text { Match pairs of } a / b \text {, change } \\
& \text { them to } A / B \\
& \text { If we run out of } b s \text { before we run } \\
& \text { out of as, accept/halt. }
\end{aligned}
$$

(b) Show the states and transitions of the actual Turing Machine. (Do as much as you can; substantial partial credit will be awarded if you are on the right track.)

