
CS 365, Spring 2015 — Feb 26th — Exam 1 Name:

Question 1. [10 points] Assume that there is a grid of h rows and w columns of integer values.
Also, assume that q is an arbitrary integer. Using pseudo-code, briefly sketch a sequential algorithm
(i.e., not parallel) that will count how many 3x3 blocks of values sum to exactly q.

For example if q = 7 and the grid is

2 0 0 1 0 0

2 0 2 0 0 1

0 2 0 2 2 0

0 0 1 0 1 1

1 0 2 0 1 0

1 0 1 1 1 2

then the result of the algorithm should be 8. (The grid locations at the center of each 3x3 block
whose sum is 7 are underlined in the grid shown above.)



Question 2. [30 points] Using pseudo-code, sketch an parallel algorithm for the problem described
in Question 1. Your parallel algorithm should divide the overall h by w grid up into an N (rows)
by M (columns) grid of processors, assigning a smaller local grid to each processor. Make sure your
pseudo-code shows

• How each processor determines which portion of the overall grid it will work on

• How the local results computed by each processor are combined to form an overall solution



Question 3. [60 points] Implement your parallel algorithm using MPI. To get started, see the
instructions on the exam web page:

http://ycpcs.github.io/cs365-spring2015/assign/exam01.html

Edit the code in countblocks.c. To run the program, use the command

./runpar filename q N M

where filename is an input file, q is the value of the integer q, N is the number of rows of processes,
and M is the number of columns of processes.

The output of the program should be

Result is number

where number is the total number of 3x3 blocks whose sum was q.

Some hints and suggestions:

• Code to read the input data into a Grid object is provided

• Because the local processes don’t modify any data (they just read the already-loaded data),
you don’t need to allocate a local Grid or copy any data into it: each process can use a region
of the global Grid

• Use the grid get current function to get values from the global Grid

• You can use the divide work function to help each process determine which ranges of rows
and columns it should check (but you aren’t required to use it)

• Only one process should report the overall result

Two test files are provided. Some tests you can try:

./runpar test1.dat 7 2 2

The output should be Result is 8.

Another test:

./runpar test1.dat 8 2 2

The output should be Result is 3.

Another test:

./runpar test2.dat 7 2 2

The output should be Result is 44.


