
CS 370 - Assignment 2 
1.  Show the following sequences commute: 
 

A rotation zR  and a uniform scaling (same scale factorβ  in all directions) S  are given 
by 
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Forming the matrix products gives 
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Hence the operations commute.  A similar relationship holds for yR  and xR . 

 
2. Despite the fact that all affine transformations are defined by 12 parameters which can 

be generated using appropriate translations, rotations, and scalings, we cannot generate 
all objects by using any order of transformations.  Each transformation order (e.g. 
TRS ) will produce a different set (though not mutually exclusive) of objects, i.e. the 
transformations do not necessarily commute.  Consider a rotation and non-uniform 
scaling given by zR  and S : 
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Forming the matrix products gives: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
000
00cossin
00sincos

z

yx

yx

z SR β

θβθβ

θβθβ

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
000
00cossin
00sincos

z

yy

xx

zSR
β

θβθβ

θβθβ

 

 



3. This is known as an oblique projection which takes the 3D coordinates and projects 
them into 2D with the z-axis at a °−135 angle.  Hence we want a projection matrix 
which transforms the coordinate axes as: 
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Assuming the form of the homogeneous projection matrix 
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The x-axis transformation gives 
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The y-axis transformation gives 
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Finally the z-axis transformation gives 
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Hence the final oblique projection matrix is  
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4. Ah, my favorite question…  There are two schools of thought on creating stereo views, 

but both involve generating two images by offsetting the camera by 2
xΔ± from a 

nominal center point (i.e. standard camera rendering position).  The first is known as 
the toe-in method where the cameras are pointed at a common point (e.g. the origin).  
This would be done using 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Left image   =>  gluLookAt(x-dx/2,y,z,0,0,0,0,1,0); 
      // Render scene 

Right image =>  gluLookAt(x+dx/2,y,z,0,0,0,0,1,0); 
      // Render scene      
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This method, while simple, produces vertical parallax issues (come discuss it with me 
for more details).  A better method is known as parallel parallax which has the two 
cameras pointing in the same parallel direction.  This would be done using 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Left image   =>  gluLookAt(x-dx/2,y,z,x-dx/2,0,0,0,1,0); 
      // Render scene 

Right image =>  gluLookAt(x+dx/2,y,z,x+dx/2,0,0,0,1,0); 
      // Render scene      
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