CS 370 - Assignment 2

1. Show the following sequences commute:

A rotation R and a uniform scaling (same scale factor £ in all directions) S are given
by

cosfd -sinfd 0 O g 0 0 O
sinfd cosf 0 O 0O g 0 0
R.(0) = S =
0 0 1 0 0 0 B 0
0 0 0 1 0 0 0 1
Forming the matrix products gives

pcosd - pfsind 0 0 pPcosd - psind 0 0
RS = pPsind Lcosd 0 0 SR, - psingd Lcosd 0 0
0 0 g 0 0 0 g 0
0 0 0 1 0 0 0 1

Hence the operations commute. A similar relationship holds for R and R .

2. Despite the fact that all affine transformations are defined by 12 parameters which can
be generated using appropriate translations, rotations, and scalings, we cannot generate
all objects by using any order of transformations. Each transformation order (e.g.
TRS) will produce a different set (though not mutually exclusive) of objects, i.e. the
transformations do not necessarily commute. Consider a rotation and non-uniform
scaling given by R_and §:

cosd -snd 0 0 B, 0 0 0
sind cosd 0 O 0O B, 0 0
R.(0)= S=lo 0
0 0 1 0 0 0 B 0
0 0 0 1 0 0 0 1
Forming the matrix products gives:
B.cosf —p sind 0 0 B.cosl —pf.sinf 0 0
in6 cosd 0 O i
RS = B, sin B, R - f,sinf f cosd 0 0
0 0 B. 0 : 0 0 B 0
0 0 0 1 0 0 0 1

3. This is known as an oblique projection which takes the 3D coordinates and projects
them into 2D with the z-axis at a—135° angle. Hence we want a projection matrix
which transforms the coordinate axes as:

x: (1,0,0) = (1,0,0) y: (0,1,0) = (0,1,0) z: (0,0,1) = (=45 ,-5.,0)

Assuming the form of the homogeneous projection matrix

Py Po Ps O

P Py Pn Py O

Dy Py Pu 0

0 0 0 1

The x-axis transformation gives

1 Pn P P O]f1
0 _ Py P Py 0][0
0 Py Pn P 0f[0
1 0 0 0 111

=p,=1l py=p;;=0

The y-axis transformation gives

0 1 p, ps 0][0
1 _ 0 py py 01
0 0 py, py 0]]0
1 0 0 0 1]f1

= py =1 p,=p;=0

Finally the z-axis transformation gives

-4 1 0 p, 0][0
-0 1 py 0ff0
0| [0 0 p, o1
1| o0 1|1

0
= P13 = P =_f Py =0

Hence the final oblique projection matrix is

P =

oS O = O
S ©ub ot
- o O O

1
0
0
0

4. Ah, my favorite question... There are two schools of thought on creating stereo views,
but both involve generating two images by offsetting the camera by + 4* from a
nominal center point (i.e. standard camera rendering position). The first is known as
the toe-in method where the cameras are pointed at a common point (e.g. the origin).
This would be done using

AX

Left image => gluLookAt (x-dx/2,y,z,0,0,0,0,1,0);
// Render scene

Right image => gluLookAt (x+dx/2,y,2z,0,0,0,0,1,0);
// Render scene

This method, while simple, produces vertical parallax issues (come discuss it with me
for more details). A better method is known as parallel parallax which has the two
cameras pointing in the same parallel direction. This would be done using

A A

AX

—

Left image => gluLookAt (x-dx/2,y,z,x-dx/2,0,0,0,1,0);
// Render scene

Right image => gluLookAt (x+dx/2,y,z,x+dx/2,0,0,0,1,0);
// Render scene

