
CS 370 - Assignment 2
1. Show the following sequences commute:

A rotation zR and a uniform scaling (same scale factorβ in all directions) S are given
by

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00cossin
00sincos

)(
θθ

θθ

θzR

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
000
000
000

β

β

β

S

Forming the matrix products gives

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
000
00cossin
00sincos

β

θβθβ

θβθβ

SRz

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
000
00cossin
00sincos

β

θβθβ

θβθβ

zSR

Hence the operations commute. A similar relationship holds for yR and xR .

2. Despite the fact that all affine transformations are defined by 12 parameters which can

be generated using appropriate translations, rotations, and scalings, we cannot generate
all objects by using any order of transformations. Each transformation order (e.g.
TRS) will produce a different set (though not mutually exclusive) of objects, i.e. the
transformations do not necessarily commute. Consider a rotation and non-uniform
scaling given by zR and S :

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
00cossin
00sincos

)(
θθ

θθ

θzR

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
000
000
000

z

y

x

S
β

β

β

Forming the matrix products gives:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
000
00cossin
00sincos

z

yx

yx

z SR β

θβθβ

θβθβ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
000
00cossin
00sincos

z

yy

xx

zSR
β

θβθβ

θβθβ

3. This is known as an oblique projection which takes the 3D coordinates and projects
them into 2D with the z-axis at a °−135 angle. Hence we want a projection matrix
which transforms the coordinate axes as:

x:)0,0,1()0,0,1(→ y:)0,1,0()0,1,0(→ z:)0,,()1,0,0(

2
1

2
1 −−→

Assuming the form of the homogeneous projection matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0
0
0

333231

232221

131211

ppp
ppp
ppp

P

The x-axis transformation gives

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
0
1

1000
0
0
0

1
0
0
1

333231

232221

131211

ppp
ppp
ppp

01 312111 ===⇒ ppp

The y-axis transformation gives

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
0
1
0

1000
00
00
01

1
0
1
0

3332

2322

1312

pp
pp
pp

01 321222 ===⇒ ppp

Finally the z-axis transformation gives

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

1
1
0
0

1000
000
010
001

1
0 33

23

13

2
1
2
1

p
p
p

0332
1

2313 =−==⇒ ppp

Hence the final oblique projection matrix is

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

1000
0000
010
001

2
1
2
1

P

4. Ah, my favorite question… There are two schools of thought on creating stereo views,

but both involve generating two images by offsetting the camera by 2
xΔ± from a

nominal center point (i.e. standard camera rendering position). The first is known as
the toe-in method where the cameras are pointed at a common point (e.g. the origin).
This would be done using

Left image => gluLookAt(x-dx/2,y,z,0,0,0,0,1,0);
 // Render scene

Right image => gluLookAt(x+dx/2,y,z,0,0,0,0,1,0);
 // Render scene

Δx

This method, while simple, produces vertical parallax issues (come discuss it with me
for more details). A better method is known as parallel parallax which has the two
cameras pointing in the same parallel direction. This would be done using

Left image => gluLookAt(x-dx/2,y,z,x-dx/2,0,0,0,1,0);
 // Render scene

Right image => gluLookAt(x+dx/2,y,z,x+dx/2,0,0,0,1,0);
 // Render scene

Δx

