
CS 370 - Assignment 3 
 
1.  For large polygons (particularly flat ones), the system will perform simple tessellation 
resulting in large fragments (which will then be shaded via interpolation of the normals 
between the original vertices), e.g. 
 
 
 
 
 
 
 
 
 
 
In order to force the system to more accurately perform shading, the application can 
divide the surface up into smaller polygons (e.g. using recursive subdivision) such that 
the tessellation will produce smaller fragments, e.g. 
 
   
 
 
 
 
 
 
 
 
In order to deal with obscured light sources (i.e. blocked from reaching one object 
because of another) and also light reflected from other objects, we would have to keep 
track of global information about the position and characteristics of all the objects in the 
scene and then simultaneously solve for all lighting effects at once.  This does not fit with 
the pipeline architecture of the graphics system which processes each object 
independently (i.e. no interaction of objects other than possibly clipping via depth 
buffering.)  Techniques to perform this type of more realistic lighting include ray-tracing 
and radiosity which are performed at the application level rather than in hardware. 
 
 
 
 
 
 
 
 
 



2.  Using the diagram 
 
 
 
 
 
 
 
 
the angle between l and v (i.e. between the light source and viewer) is given by (note that 
the angle between θ2=⋅rl by angle of incidence equals angle of reflection) 

 
)2cos( φθ +=⋅ vl  

 
By the definition of the half angle (i.e. half the angle between l and v ) 

 
))(2cos( ψθ +=⋅ vl  

 
Equating these two relationships gives 

 
ψθψθφθ 22)(22 +=+=+  

ψφ 2=⇒  
 

This angle avoids the need to compute r in the specular term )cos()( φ=⋅ vr , instead 
replacing it with )cos()cos()( 2

φψ ==⋅hn .  However if v is not in the same plane, then the 
computation only gives the angle of the projection which will be less than the true angle 
(which can be partially compensated for via adjusting the exponent e in the specular 
term.) 
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3. We first note that the projection plane becomes 
 
yp0= − y L  

 
then looking at the side view, i.e. looking down the z-axis, gives 
 
 
 
 

 

 
 

 
 
 
 
 
 
Using similar triangles we have 
 
x'
xp0

= y '
− yL

⇒ x p0=
x'

y' /− y L  

 
Similarly from a front view, i.e. looking down the x-axis, the z component is given by 
 

z p0=
z'

y'/− y L  
 
We will then define the homogeneous coordinates of the above terms (recalling that the w 
homogeneous component divides the other coordinates) 
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Then the matrix that converts the original homogeneous vertex 
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homogeneous shadow vertex 
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and thus the final coordinates are 
 

x p0=
x s
ws

y p0=
y s
ws

z p0=
zs
ws  

 
The initial translation of the light source to the origin is given by 
 
x'= x− x L y'= y− y L z '= z− zL  

 
and so final translation of the light source back to the original position is given by 
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