
CS 370 - Assignment 3

1. For large polygons (particularly flat ones), the system will perform simple tessellation
resulting in large fragments (which will then be shaded via interpolation of the normals
between the original vertices), e.g.

In order to force the system to more accurately perform shading, the application can
divide the surface up into smaller polygons (e.g. using recursive subdivision) such that
the tessellation will produce smaller fragments, e.g.

In order to deal with obscured light sources (i.e. blocked from reaching one object
because of another) and also light reflected from other objects, we would have to keep
track of global information about the position and characteristics of all the objects in the
scene and then simultaneously solve for all lighting effects at once. This does not fit with
the pipeline architecture of the graphics system which processes each object
independently (i.e. no interaction of objects other than possibly clipping via depth
buffering.) Techniques to perform this type of more realistic lighting include ray-tracing
and radiosity which are performed at the application level rather than in hardware.

2. Using the diagram

the angle between l and v (i.e. between the light source and viewer) is given by (note that
the angle between θ2=⋅rl by angle of incidence equals angle of reflection)

)2cos(φθ +=⋅ vl

By the definition of the half angle (i.e. half the angle between l and v)

))(2cos(ψθ +=⋅ vl

Equating these two relationships gives

ψθψθφθ 22)(22 +=+=+

ψφ 2=⇒

This angle avoids the need to compute r in the specular term)cos()(φ=⋅ vr , instead
replacing it with)cos()cos()(2

φψ ==⋅hn . However if v is not in the same plane, then the
computation only gives the angle of the projection which will be less than the true angle
(which can be partially compensated for via adjusting the exponent e in the specular
term.)

l

n
h

r

v
θ

ψ

φ

3. We first note that the projection plane becomes

yp0= − y L

then looking at the side view, i.e. looking down the z-axis, gives

Using similar triangles we have

x'
xp0

= y '
− yL

⇒ x p0=
x'

y' /− y L

Similarly from a front view, i.e. looking down the x-axis, the z component is given by

z p0=
z'

y'/− y L

We will then define the homogeneous coordinates of the above terms (recalling that the w
homogeneous component divides the other coordinates)

𝑥! = 𝑥! 𝑦! = 𝑦! 𝑧! = 𝑧! 𝑤! =
𝑦!

−𝑦!

Then the matrix that converts the original homogeneous vertex

€

(" x , " y , " z ,1) to the projected
homogeneous shadow vertex

€

(xs,ys,zs,ws) is

€

xs

ys

zs

ws

"

$
$
$
$

%

&

'
'
'
'

=

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

yL
0 0

"

$
$
$
$

%

&

'
'
'
'

) x
) y
) z
1

"

$
$
$
$

%

&

'
'
'
'

x

y

-yL

y'

x'

xp0

and thus the final coordinates are

x p0=
x s
ws

y p0=
y s
ws

z p0=
zs
ws

The initial translation of the light source to the origin is given by

x'= x− x L y'= y− y L z '= z− zL

and so final translation of the light source back to the original position is given by

€

xp = xp0
+ xL =

xs

ws

+ xL =
" x

" y /− yL

+ xL = xL −
x − xL

(y − yL) / yL

€

yp = yp0
+ yL =

ys

ws

+ yL =
" y

" y /− yL

+ yL = yL − yL = 0

€

zp = zp0
+ zL =

zs

ws

+ zL =
" z

" y /− yL

+ zL = zL −
z − zL

(y − yL) / yL

