
CS 370 - Assignment 4

1. This is the subject of key framing in animation where the initial and final orientations
of a model are given and the rendering algorithm must create intermediate frames to
produce a smooth transition. It also occurs in robotics as inverse kinematics, where the
end of the arm must go from one point to another to accomplish a task. If we let the
various components have sizes and orientations given by:

 Base - height 1h , rotationθ
 Lower arm - heighth2 , width w2 , rotationφ
 Upper arm - height 3h , width w3 , rotationψ

Therefore the final transformation for points on the upper arm is given by:

M =Ry (θ)T(0,h1, 0)Rz (ϕ)T(±(w2 +w3) 2,h2, 0)Rz (ψ)

One solution to the problem is to find joint angles corresponding to the two desired points
(note however that these sets of angles are often not unique.) Then the angles can be
linearly parameterized by

 fi αθθαθ +−=)1(
 fi αφφαφ +−=)1(
 fi αψψαψ +−=)1(

 where },,{ iii ψφθ are the initial angles and },,{ fff ψφθ are the final angles. As the
parameter varies 10 ≤≤ α , the joint angles will cause the tip to go from the initial point to
the final point.

Unfortunately, this simple approach can often result in problems such as gimble lock
(joint angles that produce an impossible physical configuration) or large rates of change
in angles which produces strange animations. A common way to avoid such problems is
to specify a path the end must follow (rather than simply the endpoints.) Then using a
more mathematically advanced technique involving quaternions (an extension of
complex numbers) for the angular changes can produce much more acceptable results.

2. One way to produce a scene graph that is independent of traversal algorithm, i.e. does
not depend on transformation concatenations from node to node, is to store the complete
transformation for each piece within the node structure. This way the node structure is
simply a linked list without a child/sibling representation. As each node is traversed, its
entire transformation is loaded into the ModelView matrix rather than being based on any
prior transformations from previously rendered nodes. Clearly this does not take
advantage of the relationships between nodes for efficient rendering.

3. Back-to-front renderings (i.e. painter’s algorithm) ensure that the object appearing in
the scene is the one (or part of one) closest to the viewer. However it involves rendering
all the objects in the scene which may be inefficient if a majority of them are occluded by
the closest object. Front-to-back rendering, particularly for ray tracing schemes, would
be more efficient as rendering can stop as soon as the first opaque object is encountered
(since this is the termination point of the ray.) It also allows for proper color blending for
scenes consisting of primarily translucent objects (using ss αα −1, blending factors.)

