
CS370 - Assignment 2

1. Typically when we draw 3D objects on paper (or the board) we draw the x and y
axes at 90 degrees (x axis pointing right and y axis pointing up). We then represent
the z axis (which would be coming out of the board) by a line at -135 degrees from
the x axis (diagonally down towards the left). This type of projection is known
as an oblique projection. Determine the projection matrix that would render the
objects in this fashion.

To achieve this projection we need to convert the axes as follows

x =


1
0
0
0

⇒


1
0
0
0

 y =


0
1
0
0

⇒


0
1
0
0

 z =


0
0
1
0

⇒

− 1√

2

− 1√
2

0
0


using the generic projection matrix

P =


p11 p12 p13 0
p21 p22 p23 0
p31 p32 p33 0
0 0 0 1


Thus taking the original x-axis and multiplying it by P and equating it to the
projected x-axis gives

Px =


p11 p12 p13 0
p21 p22 p23 0
p31 p32 p33 0
0 0 0 1




1
0
0
0

 =


p11

p21

p31

0

 =


1
0
0
0


Thus we see that p11 = 1, p21 = 0, p31 = 0

Similarly, taking the original y-axis and multiplying it by P and equating it to
the projected y-axis gives

Py =


1 p12 p13 0
0 p22 p23 0
0 p32 p33 0
0 0 0 1




0
1
0
0

 =


p12

p22

p32

0

 =


0
1
0
0


Thus we see that p12 = 0, p22 = 1, p32 = 0

Lastly, taking the original z-axis and multiplying it by P and equating it to the
projected z-axis gives

Pz =


1 0 p13 0
0 1 p23 0
0 0 p33 0
0 0 0 1




0
0
1
0

 =


p13

p23

p33

0

 =


− 1√

2

− 1√
2

0
0


Thus we see that p13 = − 1√

2
, p23 = − 1√

2
, p33 = 0

1



Thus the final projection matrix for an oblique projection is given by

P =


1 0 − 1√

2
0

0 1 − 1√
2

0

0 0 0 0
0 0 0 1


2. Given the following scene with the camera located at (x, 0, 1) looking at (x, 0, 2),
sketch the viewing volume and determine the final size of the object in the rendered
scene for the following projections (Note: the x-axis is ignored.) Hint: Use similar
triangles to relate the relative sizes of the objects to the relative distances from the
camera.

z

y

1 2 3 5-1

1

2

-1

-2

4

• ortho(x, x, -1, 1, -1, 4)

Note: The extents of the viewing volume are relative to the position of the
camera, thus the viewing volume will extend one unit below, one unit above,
one unit behind, and four units in front of the camera location. Furthermore,
since the projection is orthographic, the viewing volume will be rectangular as
shown below

2



z

y

1 2 3 5-1

1

2

-1

-2

4

For orthographic projections, the height of the object in the rendered scene is
the same as the original height of the object. However, we see that the top part
of the object is clipped by the viewing volume, thus the portion of the object
remaining in the viewing volume is roughly 1.5 units high.

• frustum(x, x, -1, 1, 1, 4)

Note: The extents of the viewing volume are for the near clipping plane, relative
to the position of the camera, thus the near clipping plane will extend one unit
below, and one unit above the camera, and be one unit in front. The far clipping
plane will then be four units in front of the camera with the height determined
by the projectors from the camera through the extents of the near clipping
plane. Furthermore, since the projection is perspective, the viewing volume will
be a frustum as shown below

3



z

y

1 2 3 5-1

1

2

-1

-2

4

For perspective projections, the height of the object in the rendered scene is
proportional to the ratio of the distance to the camera as shown by the pro-
jectors above. Thus we can approximate the height of the image, where hi is
the height of the image, ho is the height of the object, dn is the distance of the
near clipping plane from the camera, and do is the distance of the object from
the camera as

hi = ho
dn
do

= 2.5
1

3
=

5

6
≈ .83

3. Some of my research has been in the area of stereoscopic 3D images, which is now
used extensively for VR. To create a stereoscopic 3D image, we simply render the
scene from two different viewpoints (one to represent what the left eye would see and
one to represent what the right eye would see) and then display the corresponding
image to each eye using the VR headset. If the viewer is considered to be at the
origin with an ocular spacing of ∆x, what are the appropriate lookat() functions to
produce a stereo image pair? Hint: We need to render the scene from two different
camera locations (separated by ∆x). Consider two possible locations where these
cameras can be pointed, i.e. the center location, to produce a stereoscopic image.

There are two schools of thought on creating stereo views, but both involve
generating two images by offsetting the camera by ±∆x

2 from a nominal center
point (i.e. the standard camera rendering position). The first is known as the
toe-in method where the cameras are pointed at a common point (e.g. the
origin). This would be done using

4



Δx

with corresponding

lookat(vec3(x - dx/2, y, z), vec3(0, y, 0), vec3(0, 1, 0));

lookat(vec3(x + dx/2, y, z), vec3(0, y, 0), vec3(0, 1, 0));

While this method is simple, it can produce vertical parallax issues.

Thus a better method is known as parallel parallax which has the two cameras
pointing in the same parallel direction. This would be done using

Δx

with corresponding

lookat(vec3(x - dx/2, y, z), vec3(x - dx/2, y, 0), vec3(0, 1, 0));

lookat(vec3(x + dx/2, y, z), vec3(x + dx/2, y, 0), vec3(0, 1, 0));

5


