
CS370 - Assignment 3

1. Whenever large polygons are rendered with lighting in OpenGL, instead of
having relatively uniform shading they are bright in one area and dimmer in others.
Explain why this occurs and how this problem can be avoided. Furthermore, why
are the light sources applied to every object instead of considering whether or not
the light is blocked from one object to another, i.e. our lights do not cast shadows?

In the basic Gouraud lighting model, the shading occurs at the vertices, i.e.
where the normals are defined. Thus for large surfaces, the vertex colors deter-
mined by the lighting model will simply be interpolated producing a gradient
effect (possibly with artifacts due to tesselation). To improve the lighting ef-
fect, we can move the lighting computations to the fragment shader where the
colors will be determined by the interpolated normals on a per fragment basis.
Since there are many more fragments than vertices, the lighting will be much
more accurate but with a significant performance impact from the additional
computations.

As far as global effects, since the pipeline processes each object individually,
all the lights are applied to every object. When each object is rendered, it has
no knowledge of other objects in the scene (other than the depth of the closest
object to the camera for hidden-surface removal) and thus cannot determine if
it is in the shadow of another object. Later we will see how to address this issue
to some extent through a multi-pass rendering technique.

2. For specular reflections, the equation in the Phong model involves the angle
between the reflection vector and the viewer vector, i.e. r · v. To avoid this compu-
tation, if v is in the same plane as l, n, and r we can compute the halfway vector
(the vector that is halfway between l and v) as h = (l+ v)/(|l+ v|). Show that the
angle ψ between n and h is half the angle φ between r and v. In otherwords, show
2ψ = φ

Using the diagram below

By the definition of the half angle, we see that the angle from l to v is twice the
angle from l to h giving

l · v = cos(2(θ + ψ))

1

Furthermore, since the angle of incidence equals the angle of reflection, the angle
from l to n is the same as the angle from n to r (= θ) giving the angle from l
to v as twice the angle from l to n plus the angle from r to v

l · v = cos(2θ + φ)

Combining these two equations and equating the angles gives

2(θ + ψ) = 2θ + 2ψ = 2θ + φ⇒ 2ψ = φ

Thus we can approximate the specular attenuation factor using only the light
vector l and the camera v which are easily computed by the information passed
in by the application avoiding the need to compute the reflection vector.

3. Assume that at a given pixel in the framebuffer that contains color channel
values (0.2f, 0.6f, 0.4f, 1.0f), we render two translucent objects with the following
colors

• (0.7f, 0.2f, 0.2f, 0.6f)

• (0.5f, 0.5f, 0.8f, 0.4f)

What is the final blended color for that pixel using blend factors

GL SRC ALPHA/GL ONE MINUS SRC ALPHA
Blending in the first object with αs = 0.6 gives

r1 = 0.6 ∗ 0.7 + (1− 0.6) ∗ 0.2 = 0.42 + 0.8 = 0.5

g1 = 0.6 ∗ 0.2 + (1− 0.6) ∗ 0.6 = 0.12 + 0.24 = 0.36

b1 = 0.6 ∗ 0.2 + (1− 0.6) ∗ 0.4 = 0.12 + 0.16 = 0.28

α1 = 0.6 ∗ 0.6 + (1− 0.6) ∗ 1.0 = 0.36 + 0.4 = 0.76

Thus the framebuffer color after the first object is (0.5f, 0.36f, 0.28f, 0.76f).

Blending in the second object with αs = 0.4 gives

r2 = 0.4 ∗ 0.5 + (1− 0.4) ∗ 0.5 = 0.2 + 0.3 = 0.5

g2 = 0.4 ∗ 0.5 + (1− 0.4) ∗ 0.36 = 0.2 + 0.216 = 0.416

b2 = 0.4 ∗ 0.8 + (1− 0.4) ∗ 0.28 = 0.32 + 0.168 = 0.488

α2 = 0.4 ∗ 0.4 + (1− 0.4) ∗ 0.76 = 0.16 + 0.456 = 0.616

Thus the final color of the pixel is (0.5f, 0.416f, 0.488f, 0.616f). Note: Had
object 2 been rendered first, the final color for the pixel would be (0.548f, 0.344f,
0.344f, 0.664f) which is different from the first ordering. However, all the color
channels always remain in the range [0, 1], regardless of the number of objects
rendered.

2

GL SRC ALPHA/GL ONE
Blending in the first object with αs = 0.6 gives

r1 = 0.6 ∗ 0.7 + 1 ∗ 0.2 = 0.42 + 0.2 = 0.62

g1 = 0.6 ∗ 0.2 + 1 ∗ 0.6 = 0.12 + 0.6 = 0.72

b1 = 0.6 ∗ 0.2 + 1 ∗ 0.4 = 0.12 + 0.4 = 0.52

α1 = 0.6 ∗ 0.6 + 1 ∗ 1.0 = 0.36 + 1 = 1.36

Thus the framebuffer color after the first object is (0.62f, 0.72f, 0.52f, 1.36f).

Blending in the second object with αs = 0.4 gives

r2 = 0.4 ∗ 0.5 + 1 ∗ 0.62 = 0.2 + 0.62 = 0.82

g2 = 0.4 ∗ 0.5 + 1 ∗ 0.72 = 0.2 + 0.72 = 0.92

b2 = 0.4 ∗ 0.8 + 1 ∗ 0.52 = 0.32 + 0.52 = 0.84

α2 = 0.4 ∗ 0.4 + 1 ∗ 1.36 = 0.16 + 1.36 = 1.52

Thus the final color of the pixel is (0.82f, 0.92f, 0.84f, 1.52f), which is brighter
and contains more green than the previous pair of blend factors. Note: These
colors would be the same if object 2 was rendered first, but we see that the alpha
channel is outside the [0, 1] range, and other channels could go out of range if
additional objects were rendered.

3

