
        

 

 

 

 

 
 

Visualization Technical Report 

 

  Team members: Derrek Herr and Jordan King 

 

    YCAS Radio Telescope Project 

Senior Software Design Project I, Fall 2022 

Prof. Donald J. Hake II 

 

York College of Pennsylvania 

 

 

 

 



Table of Contents 2 

Abstract 3 

Introduction 5 

Background 6 

Design 7 

Character Environment Interaction 7 

Star Positioning Script 7 

Star Interaction System Updates for Multiple 

Data Points 

9 

Cinemachine & Cinematic Addition 10 

Implementation 11 

Character Environment Interaction 11 

Star Positioning Script 11 

Star Interaction System Updates for Multiple 

Data Points 

13 

Cinemachine & Cinematic Addition 14 

Future Work 17 

References 18 

  

  

 

 

 

 

 

 



Abstract 

 Team Saturn’s contribution to the radio telescope project for the York College 

Astronomical Society (YCAS) involves the development of two Unity programs. 

The first program is a game that consists of a scale model of John C. Rudy County 

Park where the radio telescope will be located with a model of the telescope in place. This 

game can be played using either traditional mouse and keyboard controls or by using any 

virtual reality headset. In this game, the player can manipulate the telescope model and 

highlight different parts of the telescope to learn what each of them do. The purpose of this 

game is to be used as an educational tool and for community outreach to create interest in 

astronomy.  

 
Figure 1: A screenshot of the educational game. (2019)



 

Figure 2: A screenshot of the unfinished control panel (2022) 

Our new member added some new basic elements within the project to expand on 

their experience within Unity. These new elements regard more interaction within the 

environment to invoke immersion within the program. Also, additions have been made to 

integrate tools for the player to create date specific visualizations. It encourages 

exploration by providing the tools to aid in this endeavor. This is in the form of the control 

panel, as shown in figure 2. 

 



 
Figure 3: The hardware Simulation after it has finished initialization. 

 The team’s primary focus for the Fall 2022 semester was on the continued 

development of the virtual reality and PC visualization programs. The goals for this 

semester were to update the systems built in the last semester and make the visualization 

programs fully shippable by the end of the semester. This semester mostly consisted of the 

development of new features and additions, rather than any optimizations as the program 

seems to be optimized at this point. 

Introduction 

 Team Saturn this semester primarily consisted of two members, with help being 

provided by those in the control room where necessary. 

 This semester continued the work started in 2019 on the educational game. At the 

beginning of the semester,  this educational game was mostly functional, however it lacked 

some of the features that the client was requesting. The primary goal of this semester was 

to create a working star positioning system, update the existing star interaction system, 

and create a brand new cinematic that would help explain the functions of the telescope. 

The star positioning system needed to be created so the user would be able to see all visible 

points in the sky. This meant creating a system that would take the date from the user, and 

rotate the existing star system to that specific date in time. The star interaction system, 

while mostly operational, lacked the primary feature of being able to hold multiple data 

points. This addition required multiple UI changes, a rewrite of the existing system, and 

some .CSV database changes.  



 A working gate system for the player was also added. Now they can open and close 

the gate with the click of their mouse when hovering over the entrance. In addition, a tool 

was added to the program in the form of a console that can manipulate time. Thus, the 

player can manipulate the position of stars by hovering over the buttons on the console and 

clicking them. The buttons themselves control the increase/decrease of the date unit and 

switch between date units. As a result, this allows the player to manipulate the sky for the 

preferred date and time to gaze at the stars. 

 Given that no development work has been done on the simulation this semester, this 

technical report will not focus on it. For information on the Simulation, see the technical 

report from Spring 2021[3]. An example image of the Simulation can be found above in 

figure 3.  

Background 

 The programs that Team Saturn develops are all Unity[5] projects. Unity is a 

powerful game engine capable of working with both traditional mouse and keyboard 

(M&K) controls as well as VR controls. Unity projects consist of a list of “game objects,” 

each game object having a list of properties associated with it. These game objects can be 

invisible and only work as logic handlers, or can be visible models such as the radio 

telescope model that we use.  

Game objects can have scripts attached to them. These scripts are written in C#, 

capable of using standard C# libraries and Unity’s scripting library[6] to manipulate how 

game objects act and interact with each other and the player. For example, the project 

utilizes raycasting[13], an object is set to produce a line of a certain length which, when 

collided with particular objects, can retrieve information about that object. The VR toolkit 

(VRTK) library[7] is also used to handle VR controls for the VR educational game, with 

SteamVR[8] being used as a means of connecting the VR headset to the Unity program. The 

VR headset that Team Saturn uses for the VR educational game is the HTC Vive[9], a VR 

headset supported by Unity, the VRTK library, and SteamVR. Thanks to the compatibility 

provided by SteamVR, the program also runs on an Oculus Quest 2 and any other SteamVR-

supported device. In addition, the project now uses Unity’s Cinemachine[21] for the 

Cinematic additions. 

Unity is used not only for its VR support and game development features for the 

purposes of the educational game, and its GUI for the purposes of the Simulation, but also 

for the ease of integration with the Control Room. Since both the Control Room and Unity 

scripts are written in C#, communication between the two is relatively simple, making use 

of a TCP connection and Modbus registers to pass information back and forth, the exact 

same connection that the Control Room would make with the hardware; this common 



interface is what allows the Simulation to act as a proxy for the hardware to test the 

Control Room’s behavior and how the hardware would react to its commands. 

 Build instructions, how to run the Simulation, and how to connect it to the Control 

Room can all be found on the Simulation’s Github repository wiki section[10]. 

Design 

 Unlike your typical IDE, Unity uses a unique system of GameObjects that operate 

very similar to classes. GameObjects can have scripts attached to them which are then 

compiled together and run when enabled. Basically, all interactions between classes are 

done through GameObjects. GameObjects are added to the world and then have scripts 

attached to them. Scripts are like classes, and GameObjects are like instances. So for a class 

to have an instance of another class, it must be a script attached to an object and have a 

reference to an object (which can be the same object that it is attached to) that has the 

script that it wants access to attached. 

Character Environment Interaction 

A gate system was added to the project in order to improve immersion. The main 

way for the player to interact within the environment is by clicking/hovering over objects. 

As a result, a new raycasting script was needed in order to interact with the object without 

damaging any features. Next, the object was made a child to a parent object to simulate the 

desired rotation. Then, the motion of the gate was developed by a simple boolean if-

statement system for determining if it's closed or open. Thus, the system checks the current 

rotation of the parent and determines if the gate is in the open or closed state. As a result, it 

can determine what direction the gate will be rotated based on its current state. 

Star Positioning Script 

In order to see all possible star constellations and points in the sky,  A system 

needed to be created that would allow the adjustment of the star system based on a 

specified user date and time. So, a new function was created within the star system script 

that takes a specified date and time, and then rotates the star system to that specified point. 

Upon research, it was found that stars operate on a different timescale, specifically, they 

are roughly 4 minutes faster on a day to day basis. This difference in time accumulates 

throughout the year, causing the stars in the night sky to change from day to day, this is 

why there are different constellations depending on the season. Because of this, the 

calculations would mostly be based on sidereal time[17], which is the natural 23-hour, 56 

minute, and 4 second rotation of the earth. 



 

Figure 4: A graphical comparison between sidereal time and solar time[17]. 

 The actual calculation would be based on the user specified data and times, as well 

as the sidereal time offset of the stars. In order to accurately check if the system was 

working properly, and to create any references, an external star database website 

Stellarium[18] was used. 

 

Figure 5: The user interface for Stellarium, an external star database website. This was 
used to fact check our star positions. 

A control panel would be built to control the script and provide user interaction. 

The aim for the control panel is for the user to be able to change the date/time from the 



panel itself with the various buttons. The collection of buttons on the console face is 

currently four, a set to control decrementing or incrementing of date units and a set to 

control the switching of date units. Within the script of these buttons they change the 

starfield directly for whatever date unit the player is currently on. Therefore, a way to 

switch between the date unit was needed. As a result, a new variable was created, 

DateUnitID, which resides within the Starfield script. Now, the buttons can easily change 

between the date units and DateUnitID can be referenced to see what date unit is being 

incremented or decremented.   

Star Interaction System Updates for Multiple Data Points 

Our client made clear that some changes needed to be made to the original star 

interaction system built in the Spring 2022[19] semester. The original system, while fully 

operational, did not account for multiple data objects per point( a data object being the 

data image, RA and DEC[14] values, and the date/time captured). This meant that a point in 

the sky, like the sun for example, could only have one data object. The client wanted to be 

able to cycle through multiple data objects per point. This adjustment required multiple 

additions and refactors of the original data code.  

The process of making this addition included an addition to the .CSV database that 

would allow the addition of a datetime[20] string. This datetime string would be converted 

to a .NET datetime variable to be used in the sorting of data objects. A new struct was 

created for the data objects which included all the information present in the .CSV file 

 

Figure 6: Excel Sheet of “Sky_Data”: RA, DEC, DIST(lightyears), Label, Desc, Image 

Name, Datetime String. 

 This new struct was then used to create multiple data objects from the .CSV file. 

These objects would then be allocated to each individual point in the sky. The data objects 

were then grouped together based on their proximity to each other.  

 Multiple UI changes were made to accommodate the additions of the datetime string 

and the function of cycling individual data objects per point. These additions were added 

on top of the old star interaction UI. 

 

Cinemachine & Cinematic Addition 



 Our client expressed interest in a sort of cinematic that would be able to quickly 

teach participants of the functions and purpose of the radio telescope without user 

interaction. For this feature it was chosen that Unity’s own cinematic system, 

Cinemachine[21] would be used for the development of this feature.  

 

Figure 7: An example image of the Unity Cinemachine developmental workspace. 

 For the planning and design of the actual cinematic, a storyboard[22] was created and 

presented to the client. The client then made additions and changes to the overall cinematic 

scenes.  

 As for the development of the cinematic within Unity. It was found early on in 

development that the VR version would need multiple accommodations as  Cinemachine 

was not fully compatible with VR. Also,  Cinemachine did not have any form of text function, 

and so a wrapper class had to be created for subtitles. Also,  Cinemachine  did not have any 

form of fading transitions, and so a quick system was built for that as well. It was also found 

that any form of movement that was not within the user's control would induce nausea, so 

all scenes were made stationary with this in mind.  

 Because of the differences in the VR version, it was decided that an entirely different 

scene would be created for both the computer and VR programs. The process of initiation 

would involve the player clicking on an added cinematic button, which would load the new 

cinematic scene, play the cinematic, and then reload the original play scene with the 

telescope. 

 



Implementation 

Character environment interaction 

 Implementation of more character interaction within the environment was 

relatively easy. The process I utilized to create the gate and the console functionality would 

be creating a fundamental model. Therefore, avoiding the common mistake of making an 

object appealing without developing the core functionality. As a result, the gate’s model 

was only a basic cube object, and the main focus was on opening/closing. When handling 

the script’s development, it is advised to start and develop functionality in bits and pieces. 

Thus, the script to activate open/close was developed originally to move the gate with the 

activation from a key press. Therefore, this removes any possible outside factors affecting 

the desired performance and makes troubleshooting leagues easier. Moving onto the ray 

casting would be permitted, knowing the base functionality is sound. The challenges with 

the implementation were reasonably low due to having experience with the Unreal engine. 

However, there were issues with getting used to how Unity handles raycasting. 

Star Positioning Script 

  Implementing the control panel was moderately challenging, considering that 

experience with the Unreal engine was present. However, there were caveats to 

implementing the raycasting and a terminology difference. For example, in Unreal, 

raycasting is referenced as line tracing, which needed to be clarified to research 

documentation for implementation in Unity. In addition, the implementation is different 

between Unity and Unreal; typically, one script would be needed for multiple objects in 

Unreal. However, for Unity, each object needs its own personal script, or it will activate the 

script as many objects have it. In addition, it was tackling a new feature, displaying text on a 

3D object, which was challenging in its regard. Since the tricks and limitations were 

unknown and caused a period of long experimentation to understand the text object 

feature. The culprit was implementing a solution only that did not account for multiple text 

objects. However, thankfully further research into the subject revealed a better solution 

that accounted for multiple text objects. This solution was to have the text object reference 

itself rather than the TextMeshPro. Therefore, each text object was unique and could 

display various texts rather than having one object display something and the rest nothing. 

 

 As for the actual star system adjustments and calculations, the first step was to 

actually find a reference point that could be used for the rest of the script’s adjustments. 

For this I used the external tool Stellarium to get my reference point positions. For the 

actual reference point, the Vernal Equinox of 2022[23] was chosen as this seems to be a 

common point in astronomy.  



 From this reference point a datetime is created and then referenced for all future 

calculations. After the user enters the appropriate hour, day, month, and year, another 

datetime is created, this is the time the user requests the stars to be positioned at. Next, the 

difference in minutes between these two points are calculated. From this difference, we can 

find the amount of time that has passed from the reference. Since the reference is correct, 

all that needs to be done is multiply this difference by the amount of degree change per 

minute. This can be given by calculating the amount of sidereal days from the difference, 

and multiplying the degree of change by the amount of minutes passed. This comes to 

around a 0.25 degree rotation every minute.  

 However, this system did not align entirely with the information that Stellarium  was 

giving. To accurately check if the stars were aligned with their specified dates, a separate 

tool was created inside of Unity. Instead of having to calculate each star position for each 

test, a simple cube was created inside of Unity that would automatically face a chosen 

position. From this, the position values of the cube could be measured to determine the 

Azimuth and Elevation[24]  values of whatever it was facing.  

 

Figure 8: The measure cube was programmed to measure the position of a chosen 

star. This image takes place at the Vernal Equinox of 2022, our chosen reference point. The 

accuracy of this reference is nearly identical to the reference positions given by Stellarium.  

 To adjust for this inaccuracy, leap years are then calculated separately from the 

minute difference, while still using sidereal days. Based on the offset year of which the date 



is from its closest leap year, an additional 0.25068 degree of difference is added on for 

every year that is ahead of the current leap year. After combining this leap year offset with 

the original yearly calculation, the final amount of degrees is set and the star system is then 

rotated when prompted by the user. This method of calculation is able to get the correct 

star positions to an accuracy of around 3 degrees of rotation, which is nearly invisible to 

the naked eye. 

 

Figure 9: This image shows the comparison between the in-game star 

positions(left) compared with the Stellarium star positions(right). Star positions in this 

example are accurate to the naked eye. 

Star Interaction System Updates for Multiple Data Points 

Our client made clear that one of his most requested features was the ability to 

interact with the points in the sky that the telescope had received data from. Last semester 

the main functionality of this system was created, however it lacked the vital function of 

being able to handle multiple data points in one point in the sky. Since the telescope is 

mostly going to collect data from a few specific points, this feature had to be added to 

complete functionality.  

 First off, the .CSV file structure was altered to handle datetime strings; this is needed 

to not only sort the data points but also label them. This, along with all the other 

information contained within the .CSV is put into a list, which is then sorted by this 

datetime object. In order to group points that are the same, each point is checked based on 

it RA and DEC values, if a point is found that is already within 2 degrees, instead of a new 

point being spawned within the program, its data object (which contains all its 



information) is added onto the already existing point. Effectively, this system completes the 

spawning of all data points, which have multiple data object functionality, in O(n log n) 

time complexity.  

 In order to get the multiple data points working, a new struct was created for the 

data objects. Instead of each point containing a singular points data, the points now contain 

a list of data objects, which contain the data for each line in the .CSV. This allows the user 

the ability to cycle through multiple dates worth of data, all on a single point in the sky.  

 Multiple new UI changes were added to accommodate the addition of date/time 

data, as well as indicators of which data object is currently visible, and if a point has 

multiple data objects available.  

 

Figure 10: Visual of updated sky interaction UI. On the right is the UI display after 

selecting the triangle object for the star “Alkaid”. The label can be seen at the top, the 

datetime string right below the label, the corresponding .JPG in the middle, the RA and DEC 

values right below, and the description is then listed at the bottom. The left and right 

arrows indicate if the user can cycle to another data object, these arrows turn transparent 

if there is no corresponding data object in that direction.  

 In addition, the VR version of this system had its control scheme changed to 

accommodate the ability to cycle through multiple data objects.  

Cinemachine & Cinematic Addition 

To begin the development of an all new cinematic system, a storyboard was first 

created in order to plan out the development and progress of the cinematic. This 

storyboard was then presented to the client, of which many changes were made. With this 

done first, the expectations of the cinematic as well as its goals were clearly defined. 



 Upon the research and prototyping of the new Unity Cinemachine, it became 

apparent that three things were problematic; the lack of text functionality, the 

incompatibilities with VR, and the lack of a proper transition system.  

 For the development of the cinematic, a test scene was created that contained some 

of the assets that the main game also contained. This was done so no conflicts would occur 

during development between the completed sections of the project and this new 

framework. An example image of this test scene is shown below in figure (11).  

 

Figure 11: The test scene used to develop the cinematic. Cinemachine was added to 

this scene and tested without the risk of interfering with other game scenes.  

 The start of development first focused on creating a text wrapper class that would 

work within Unity’s Cinemachine framework. This allowed the easy creation of text objects 

that would be shown on screen below each of the cinematic shots. Next, because there was 

no easy transition system already within Cinemachine, a work-around had to be created 

that would allow easy transitions. This required the creation of a shot that only displayed a 

black output, this shot would then be transitioned to between scenes to simulate a black 

fading transition effect.  

 In order to start the cinematic, a simple button was created within the main scene 

that, using a raycast, would start the cinematic if the player clicked on the button.  



 

Figure 12: The Cinematic start button. The user simply clicks on the green button to 

start the cinematic. Once the cinematic is finished, the user is returned to the main play 

area. 

 An example of what the cinematic looks like in the mouse and keyboard version is 

shown below in figure (13).  

 

Figure 13: An example shot of the cinematic. The subtitles for each shot are 

displayed at the bottom . 

 In general, much of the cinematic system was completed, and is fully operational on 

the mouse and keyboard version. However, due to some compatibility issues with 

cinemachine, the VR portion of the cinematic remains unfinished. The player can interact 

and start the cinematic and see the text for each shot, but the particular positions of the 



player are not aligned with the mouse and keyboard cinematic, often with the player facing 

incorrect positions when playing the cinematic. A polishing of the virtual reality shots 

would make the VR cinematic much more operational.  

 

Future Work 

As for future work, multiple additions were never made that were originally 

planned. Firstly, the cinematic for the VR is not fully complete. The setup for the scene, the 

text functionality, and the scene management are complete, however the virtual camera 

scenes still need to be polished as the VR shots do not align with the mouse and keyboard 

cinematic shots.  

Also, the sun and moon were never added to the program. With this being one of the 

main focuses of the telescope, the addition of the sun and moon would be a logical and 

welcomed feature that has been requested by our client. 

An interactive virtual appointment was also planned but was way out of scope for 

this semester. A virtual appointment would require some complicated additions and 

calculations, much of which would have taken too much time to fit into this semester. 

Also, the main menu never got the graphical options that were originally planned for 

this semester. With the addition of the cinematic scenes, this may be more difficult than it 

was originally planned. At this point, this seemed to be pretty low on importance and was 

scrapped for this semester as our client agreed that the other tasks were more important. 

The continuation of this would make the .exe files more organized and would limit the 

amount of scenes required in the Unity build file. 

Lastly, the Quest 2 demo program could be modified to include many of the new 

features and implementations that are present within the main program. This would 

require a lot of development time and so, it was not attempted this semester.  

 

 

 

 

 

References 



[1] Modbus protocol, https://modbus.org/ 

[2] log4net library, https://logging.apache.org/log4net/ 

[3] Spring 2021 Team Saturn Technical Report, https://docs.google.com/document/d/... 

[4] Fall 2020 Team Saturn Technical Report, https://docs.google.com/document/d/... 

[5] Unity, https://unity.com/ 

[6] Unity scripting library, https://docs.unity3d.com/Manual/index.html 

[7] VR toolkit library, https://vrtoolkit.readme.io/docs 

[8] SteamVR, https://store.steampowered.com/app/250820/SteamVR/ 

[9] HTC Vive, https://www.vive.com/us/ 

[10] Simulation GitHub repository wiki, 

https://github.com/YCPRadioTelescope/TelescopeVisualization/wiki 

[11] Fall 2021 Control Room Technical Report, https://docs.google.com/document/d/… 

[12] Blender https://en.wikipedia.org/wiki/Blender_(software) 

[13] Raycast https://en.wikipedia.org/wiki/Ray_casting 

[14]RA & DEC 

https://www.celestron.com/blogs/knowledgebase/what-are-ra-and-

dec#:~:text=RA%20(right%20ascension)%20and%20Dec,like%20latitude%20on%20the

%20Earth 

[16] OpenXR https://www.khronos.org/openxr/ 

[17] Sidereal time Solar Time vs. Sidereal Time | Las Cumbres Observatory (lco.global) 

[18] Stellarium Stellarium Web Online Star Map (stellarium-web.org) 

[19] Spring 2022 Tech Report Team Saturn Technical Report - Google Docs 

[20] Datetime DateTime Struct (System) | Microsoft Learn 

[21] Cinemachine Cinemachine Documentation | Package Manager UI website 

(unity3d.com) 

[22] Telescope Storyboard Telescope StoryBoard - Google Slides 

https://modbus.org/
https://logging.apache.org/log4net/
https://docs.google.com/document/d/11sJlu2ekBs8dAL5aqUdGwcQ_hYzjZ6lnIcOFaOe15jc/edit?usp=sharing
https://docs.google.com/document/d/1S2j0x8MOVsSFGO6r72ojcyCDQAyGYPNemCEBkn8cB-g/edit?usp=sharing
https://unity.com/
https://docs.unity3d.com/Manual/index.html
https://vrtoolkit.readme.io/docs
https://store.steampowered.com/app/250820/SteamVR/
https://www.vive.com/us/
https://github.com/YCPRadioTelescope/TelescopeVisualization/wiki
https://docs.google.com/document/d/10RPAiB_wCfEqlzePWlvaZsp6BjeSuPRP_TsW9eVkqEU/edit?usp=sharing
https://docs.google.com/document/d/10RPAiB_wCfEqlzePWlvaZsp6BjeSuPRP_TsW9eVkqEU/edit?usp=sharing
https://en.wikipedia.org/wiki/Blender_(software)
https://en.wikipedia.org/wiki/Ray_casting
https://www.celestron.com/blogs/knowledgebase/what-are-ra-and-dec#:~:text=RA%20(right%20ascension)%20and%20Dec,like%20latitude%20on%20the%20Earth
https://www.celestron.com/blogs/knowledgebase/what-are-ra-and-dec#:~:text=RA%20(right%20ascension)%20and%20Dec,like%20latitude%20on%20the%20Earth
https://www.celestron.com/blogs/knowledgebase/what-are-ra-and-dec#:~:text=RA%20(right%20ascension)%20and%20Dec,like%20latitude%20on%20the%20Earth
https://www.khronos.org/openxr/
https://lco.global/spacebook/sky/sidereal-time/#:~:text=Sidereal%20time%20is%20based%20on,less%20than%20a%20solar%20day.&text=Sidereal%20time%20is%20useful%20to,to%20the%20object%27s%20right%20ascension.
https://stellarium-web.org/
https://docs.google.com/document/d/1b8wEJbGtuN3ecDvJinNr30YO6r8lAG-qyi86U05qNrE/edit
https://learn.microsoft.com/en-us/dotnet/api/system.datetime?view=net-7.0
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.3/manual/index.html
https://docs.google.com/presentation/d/1B6kcnVYuVf1KUyQz8l07ByFL1oAjK1uv_rDj_C6MYII/edit


[23] Vernal Equinox of 2022 Enscript Output (weather.gov) 

[24] Azimuth and Elevation for Stars 

homework.uoregon.edu/pub/emj/121/lectures/skycoords.html#:~:text=When the star is 

directly,to north (360 degrees). 

 

https://www.weather.gov/media/ind/seasons.pdf
http://homework.uoregon.edu/pub/emj/121/lectures/skycoords.html#:~:text=When%20the%20star%20is%20directly,to%20north%20(360%20degrees).
http://homework.uoregon.edu/pub/emj/121/lectures/skycoords.html#:~:text=When%20the%20star%20is%20directly,to%20north%20(360%20degrees).

