
Team Jupiter 1

Control Room Final Report

Tyler Franks
Liam Bradly

Joshua Snyder

YCAS Radio Telescope Project
Senior Software Design Project II, Spring 2022

Professor Donald J. Hake II
York College of Pennsylvania



Team Jupiter 2

Table of Contents

Table of Contents 2

Abstract 4

Introduction 5

Background 6

Implementation 8
Sensor Network 8

DHT22 Integration 8
Fan Control 10
Sensor Customizability 12
Sensor Status 14

Stow Without Homing 14
Inertial Testing Software 14
AES-256 Encryption 16
Appointment Calibration 18
Software-stop Toggles 19
Custom Orientation Input Form 19
Reset MCU Error Bit Command 20
Check for Absolute and Motor Encoder Discrepancy 20
Stop Button Addition on Control Form 20
New Immediate Stop Implementation 21
User Manual Updates 22
Connection With the Hardware (Team) 22
Bug Fixes and Additional Tasks 23

Fix Simulation Acceleration Timestamps 23
Receive Acceleration Time Captured from the Sensor Network 23
Fix Azimuth Discrepancy 23
Fix Incorrect Position Errors While Running Simulation 24
Jog Stop Fix 24
Fix Timestamp Issue 24
Fix memory leak in RemoteListener 24
Fix DeleteCSVFile Failure Message 25
Update Dropdowns for Default Values Checkbox 25

Improved Testing Coverage 25
Added Tests 25



Team Jupiter 3

Documentation 26
Inertial Testing 26
Remaining Tasks 26
Workflow Walkthrough 26
User Manual 26
GitHub 27

Future Work 28
SpectraCyber Spectral Scan CSV 28
Secondary Appointments 28
Send Appointment Data to a User if their Appointment is Canceled 29
Shutdown RT Occasionally Freezing 29
Allow Motors to Maintain Movement Between Orientations 29
Implement Sensor Network Sensor Statuses 30
Characterize Accelerometer Data and Act Upon It 30
Home Telescope Before Automated Movement 30
Integrate Current Transducers 30
Store Admin TCP Commands and Verify Timestamps 30
Interrupt Homing by Triggering Homing Sensor Signal 31
Make Final Position Offset Values Setable from Control Room 31

References 32



Team Jupiter 4

Abstract
The following is the technical report for the Control Room team written during the Spring

Semester of the fourth year of development on the YCAS Radio Telescope Project. Over the
course of the Spring 2022 semester, the Control Room team was able to make significant
improvements and enhancements, finalize certain aspects, add new functionality, and make the
Control Room Application more stable, testable, accessible, and functional. The team has
improved testing to cover a wider range of functionality, completed a wide variety of tasks and
fixed bugs, improved interaction with the ESS, and implemented encryption for the TCP[9]

Communication Protocol to be used with the Mobile App.

The current plan is to deploy the telescope at John C. Rudy County Park at the end of the
Summer 2022 semester. Further real-world systems-level acceptance testing will need to be done
once this is completed, which future team members will be responsible for. The Control Room
team created numerous issues on GitHub that will help future members understand which areas
of the software need more work.



Team Jupiter 5

Introduction
York College of Pennsylvania (YCP), the York County Astronomical Society (YCAS),

and the York County Park System (YCPS) collaborated in an effort to develop and design, from
the ground up, a radio telescope to be installed at the York County Astronomical Society
(YCAS) observatory located at John C. Rudy County Park. This telescope has the capabilities of
remote access, auto location, and auto-tracking.

Some of the Control Room team’s tasks this semester include continuing the development
of the Control Room Application for the radio telescope, and adding any last requested features,
such as:

● Integrate a DHT22[21] temperature and humidity sensor
● Implement internal fan control
● Add customizable settings for the Sensor Network[1]

● Perform inertial testing between the Control Room App and the RT HW mount and
analyze collected data

● Encrypt communications between the Control Room App and the Mobile App
● Update the custom orientation input dialog to use the appropriate software stops
● Add a command to reset the MCU error bit
● Update the appointment calibration routine
● Update the backend to include all sensors and their statuses

Other tasks of the Control Room team include improving upon and testing the work of
previous teams, such as:

● Finalize existing functionality
○ Improve testing
○ Fix bugs
○ Log any unfixed bugs to the issue tracker so they do not get forgotten
○ Document how different parts fit together and interact with each other

● Verify that functionality that was instantiated from previous teams can be replicated
reliably and consistently

The Control Room team faced many challenges and obstacles this semester including
onboarding new team members, having to learn about the hardware on the fly, and
troubleshooting and accounting for new hardware issues as they arose. Perhaps the most difficult
obstacle the team faced this semester, however, would be the downtime we had to deal with,
leaving the team with roughly only 3 weeks to test and run the telescope. Even so, the Control
Room team was able to persevere and succeed in the objectives that were defined at the
beginning of the semester and are well-positioned to onboard new members and continue work
into the Fall 2022 semester.



Team Jupiter 6

Background
Throughout the semesters, each new team has brought something new to the Control

Room Application in terms of functionality and usability. The team previous to this semester, in
the Fall of 2021, reimplemented TCP communications with the Mobile App and Front End,
implemented software stops that act as another layer of stop protection, and performed full
integration testing on the hardware[11].

As the Control Room team continues to expand the functionality of the Radio Telescope,
the Mobile and Front End teams must also accommodate any of the updates.

The Control Room Application software (CR) drives the telescope’s hardware,
communicating with a Programmable Logic Controller[2] and Motor Controller Unit (MCU)[3],
and receives radio frequency (RF) data through the SpectraCyber[4] which is then saved to a
MySQL[5] database. The database, using the Entity framework[6] will save relevant data that the
Mobile and Front End teams can access and present for user consumption, such as:

● Appointment RF data
● Sensor statuses
● Temperatures
● Acceleration data blobs
● Weather information
● Appointment statuses

Because of this communication with the database, the YCAS members who will be
administering the telescope will be able to effectively and efficiently control the telescope,
maintain it, and whenever it enters an unsafe condition, return it to a safe and stable state.

The Control Room team’s main tasks this semester included:
● Conduct Inertial Testing and analyze collected data
● Encrypt Mobile App communications
● Integrate a DHT22 temperature and humidity sensor
● Implement internal fan control
● Make Sensor Network customizable
● Reimplement appointment calibration
● Stow the telescope correctly even if it hasn’t been homed
● Speed up Sensor Network position updates
● Make software stops toggleable
● Add a Stop button
● Check for absolute encoder discrepancies and timeouts
● Implement sensor statuses



Team Jupiter 7

● Add new ResetMCU Bit command for Mobile TCP
● Fix azimuth discrepancy
● Reimplement stopping deceleration
● Remove unused and obsolete code
● Verify that the connection with the hardware is still possible
● Verify that connection with other teams is still possible
● Rigorously test the software (alongside the hardware)

○ Record any bugs or abnormalities
● Fix as many bugs as possible
● Expand testing so that it encompasses more functionality



Team Jupiter 8

Implementation

Sensor Network
The Sensor Network[1] gathers sensor data from various sensors and sends that data, at

regular intervals, to the Control Room software. This data is received in a packet that must be
decoded on the Sensor Network Server end and then parsed into a representation that can be
displayed on the Control Room software’s user interface. The Control Room software and/or the
user can then make decisions based on that decoded data, if necessary. Requests to turn the fan
on and off are also sent from the Control Room to the Sensor Network. A separate Sensor
Network Testing Suite application that facilitates troubleshooting and generating test CSVs and
packets has also been developed alongside the Control Room software.

Here are the various types of sensor data being retrieved from the Sensor Network:
● Azimuth Motor Temperature
● Elevation Motor Temperature
● Azimuth Motor Acceleration
● Elevation Motor Acceleration
● Counterbalance Acceleration
● Elevation Absolute Position
● Azimuth Absolute Position
● Internal Temperature and Humidity

DHT22 Integration
A new DHT22[21] temperature and humidity sensor was added to the Embedded

Sensor System and was integrated into the Sensor Network[1]. The internal ambient
temperature and humidity read from the sensor are used to determine whether or not a fan
should be turned on or off. Integrating this sensor required many changes to the Control
Room software, Testing Suite, and Backend.

A new data type, Humidity, was added to the Control Room application and to the
Backend database. Humidity data is very similar to how temperature data is formatted.
Humidity data contains the relative ambient humidity, time samples, and location
sampled should we ever want humidity read elsewhere.



Team Jupiter 9

Both internal ambient temperature and humidity are displayed on the UI as shown
below. The ambient dew point is also computed and displayed on the UI. Being a new
sensor in the sensor network, there is now an initialization checkbox used to enable or
disable the sensor data, as well as sensor statuses and error codes for the senso.

Figure 1. Ambient Temperature, Humidity, and Dew Point on the UI



Team Jupiter 10

Figure 2. Checkbox for initializing ambient temperature and humidity sensor

Adding the DHT22[21] also required changes to the Sensor Network packets
received from the Embedded Sensor System. Temperature and humidity data were added
to the end of the packet, and statuses and error codes were added to the beginning.

Fan Control
A new fan was added to the Embedded Sensor System, used to cool down internal

ambient temperatures and reduce condensate from building up on the inside of the
telescope. To monitor and understand how condensate could build up on the inside of the
telescope, the fan control needed to know both the outside temperature and dew point.
This ultimately led to the decision to have the fan control logic take place on the Control
Room application side of things.

The fan’s primary purpose is to reduce heat and moisture inside the elevation
frame. To do this, customizable upper and lower temperature and humidity thresholds
were added to the diagnostics form (Figure 3). These thresholds are stored in the
database and are used to determine at which temperatures to turn the fan on and off, and
at which relative humidity levels to turn the fan on and off. The flow diagrams for the fan
control logic are shown below.

Figure 3. Ambient temperature and humidity thresholds



Team Jupiter 11

Figure 4. Fan control logic

In the case that the fan is desired to be permanently on or off, a new override
button was created that would override the fan logic and disallow any further changes to
the fan state. Additionally, a fan toggle button was also added to manually change the fan
state. The status of the fan is always displayed on the diagnostics form so that the user
may always know what the fan is doing.



Team Jupiter 12

Figure 5. Ambient temperature and humidity override

Figure 6. Fan toggle button and status

Adding the fan logic to the Control Room application side of the Sensor Network
required that a new two-way communication protocol be established. After every Sensor
Network packet is received, the Control Room application immediately sends back a
packet containing a byte indicating whether or not the fan should be on. The Sensor
Network Packet received by the Control Room application also contains the state of the
fan, so that in the case of a disconnection, the fan state can be known immediately.

Sensor Customizability
Once the telescope is moved to the park, there may be many settings and/or

values that we may want to tweak within the Embedded Sensor System code, but we may
not have the ability to flash the Teensy[14] remotely. To get around this, certain
characteristics of the Embedded Sensor System code have been made customizable
through the initialization packet. Mainly, all three ADXL345 3-axis accelerometers[12] and
multiple timing periods have been made customizable from the diagnostics form.



Team Jupiter 13

Figure 7. Sensor customizability options

For the accelerometers[12], there are multiple different options for customizations.
Each accelerometer has its own sampling frequency, FIFO size, g-range, XYZ offsets,
and can be full bit resolution or 10-bit resolution. The sampling frequency determines
how fast the acceleration values are sampled. The FIFO size determines how many
samples are stored on the accelerometer until it is ready to be emptied. The g-range is the
range of g-forces that the raw acceleration data is mapped to. The XYZ offsets are the
offsets applied to the raw acceleration data and are used for calibration. Finally, the full
bit resolution option is used to set the accelerometer to full bit resolution or 10-bit
resolution, which affects the precision of the acceleration data. Refer to the ADXL345
datasheet for more information.



Team Jupiter 14

There are also multiple different timing periods that can be set. All periods are set
based on milliseconds. The timer option sets how often the timer ISR on the Teensy[14]

will interrupt, the ethernet option sets how often the main packet data will be sent to the
Control Room application, the temperature option sets how often the temperature sensors
will be sampled, and the encoder period sets how often the absolute encoders[13], [22] and
counterbalance accelerometer are sent.

All areas in the Control Room application which used static sensor settings have
been updated to use the new customizability options. These options are stored alongside
the Sensor Network[1] Configs stored in the database so the settings will persist from
session to session.

Sensor Status
We want to know what sensors are functioning and have records of the sensor

statuses in the database so we may understand what has caused an error. To do this, it
involved a modification of the sensor monitoring routine to set statuses appropriately
which included absorbing our weather monitoring routine.

The sensor_status table was updated to include statuses for all sensors. It includes
timestamps for when the statuses are updated and a status for each sensor in the network.
For most sensors the database can be updated through the Sensor Network[1] server, some
logic was provided for calculating a sensor timeout for the remaining sensors though
some future work will involve computing statuses from the raw Sensor Network data.

Stow Without Homing
When using the radio telescope, there may be times when the telescope will stow even

though the motors have not been homed yet. To address this problem, the Control Room team
utilized the Sensor Network’s[1] absolute encoders[13], [22] to determine the position of the
telescope, run the stow command, and verify that the telescope was successfully stowed with the
absolute encoders. Due to the simulation's absolute encoders not reflecting the actual position of
the simulation telescope, Stow Without Homing is disabled on the simulation.

Inertial Testing Software
To support the inertial testing done by the radio telescope team, the Control Room team

developed new inertial testing tools[18] using Jupyter Notebooks and Python. The software allows
the user to pull data from the database based on the inputted datetimes, and graph the pulled data
for further analysis. Temperature data is pulled for both the azimuth and elevation motor and
graphs for each are generated (Figure 8). Accelerometer data is pulled for each of the ADXL345



Team Jupiter 15

accelerometers[12] (elevation motor, azimuth motor, and counterbalance) and each axis is graphed
as well as the acceleration magnitude (Figure 9). Each of the acceleration graphs also has its
own frequency analysis applied to them. FFT and Lomb-Scargle analysis are used to extract
frequency data from the raw acceleration data (Figure 10). FFT generates a graph much faster
than Lomb-Scargle does, but Lomb-Scargle produces more accurate results due to the
non-uniform acceleration sampling.

Figure 8. Motor temperature graph

Figure 9. Acceleration graph



Team Jupiter 16

Figure 10. Frequency analysis graphs (simulated data)

A large benefit to the inertial testing tools[18] is that it serves as a framework and proof of
concept for integrating these analyses into the Control Room application.

AES-256 Encryption

Data sent between the Mobile App and the Control Room is now encrypted using
AES-256 encryption. This includes all data that is sent between the two platforms, such as
commands, output log messages, etc. Encryption only operates on versions 1.1+ of our TCP[9]

protocol. However, older versions of the protocol will still work with the Control Room as
normal, but any data sent between the two platforms will not be encrypted.

The process of sending and receiving data from the Mobile App is as follows: Data is
received from the Mobile App and tested to see if the data was encrypted. This is done by
checking the first token of the data string, which contains the version number. If the version
number is 1.1 or above, then the Control Room knows that the data is encrypted and proceeds to



Team Jupiter 17

decrypt the data. Once the data is decrypted, the data is parsed and processed like normal. To
send data back, the control room encrypts anything it sends back since it knows that the version
of TCP the Mobile App uses supports encryption. After the data is encrypted, it’s sent like
normal to the Mobile App. Figures 11 and 12 below visualize this process.

Figure 11. Receiving data from the Mobile App



Team Jupiter 18

Figure 12. Sending data to the Mobile App

Appointment Calibration

The existing calibration routine was scrapped for a new calibration routine that
accomplished what was originally intended. The new calibration routine is as follows:

1. Home the telescope
2. Perform two SpectraCyber[4] reads for calibration before the appointment
3. Run the appointment
4. Run another appointment calibration in reverse order.

The calibration data is stored in CSV files in addition to the appointment data and then
sent as part of an email once the appointment has finished.

Each calibration involves two SpectraCyber reads: the first points up to the sky to get a
neutral reading; the second points at a specific tree on the property that outputs a specific radio
frequency associated with that tree. Running calibrations both before and after an appointment



Team Jupiter 19

can tell users if any discrepancy has occurred during the appointment, and can be factored into
the data accordingly.

To uphold industry standards, a full calibration must be performed before and after an
appointment to ensure that data is accurately read. To slightly improve the timeliness of this
process, the beginning calibration and the ending calibration work in reverse order from one
another to prevent multiple unnecessary movements, although this is only partially effective as
we must home the telescope between appointments to ensure no azimuth discrepancies.

Software-stop Toggles

The Control Room is now able to switch between using the absolute elevation encoder[13]

and the counterbalance accelerometer[12] to read elevation data. The user is also able to change
between the two as well by using a checkbox on the main control form. In the event that either
fails, the Control Room will switch the device used to read elevation data. Besides failure, the
Control Room will switch from the elevation absolute encoder to the counterbalance
accelerometer in the event that the encoder is out of range. It should be noted that the user won’t
be able to manually switch to a device that can’t be used. For instance, if the counterbalance
accelerometer is experiencing an error, only the elevation absolute encoder can be used, and the
user will be notified about this when attempting to change devices.

Custom Orientation Input Form

The previous input form for the user to enter a custom orientation to move the telescope
was poorly designed and needed revision. We also needed to ensure that the correct software
stops were used when validating the input into the form. Changes have been implemented so that
the correct software stops are used when validating input. The form also updates per character
entered, hence if invalid input is entered, a message will be shown to the user letting them know.
More changes have been made to the form that allows for a much cleaner appearance, as well as
making use of abstraction so that it can be used at other points in the Control Room if needed.
Figures 13 shows the new input form.



Team Jupiter 20

Figure 13. The new custom orientation input form

Reset MCU Error Bit Command

The MCU[3] error bit can now be reset via the Mobile App remotely. This involved
implementing a new command parse and execution method since a new command needed to be
created. This command is only supported with versions 1.1+ of our TCP protocol [10].

Check for Absolute and Motor Encoder Discrepancy

Previously there was no check to ensure that absolute and motor encoders were reading
similar data. A check was implemented that uses a discrepancy constant to ensure that the motor
encoders aren’t falling behind the absolute encoders[13], [22]. If that were to happen, it would
indicate that a motor was skipping steps, and likely experiencing an undesirable level of stress.

Stop Button Addition on Control Form

We have previously had stop functionality for the telescope, but there was no
implementation on the control form to stop the telescope. Previously one would have to hit the
red emergency stop button to stop the telescope. With this addition it uses the same stop scripts
as the Mobile App and allows the user to stop the telescope from software instead of using the
hardware to stop the telescope.



Team Jupiter 21

Figure 14. Updated Control Form

Figure 15. Stop Button Implementation

New Immediate Stop Implementation
While conducting inertial testing, the Control Room team discovered that the immediate

stop command worked too well, which could result in damage to the radio telescope mount if an
immediate stop was executed while the mount was operating at a sufficiently high rate of
rotation. To get around this problem, controlled stops are now used for all movements and an



Team Jupiter 22

adequate amount of deceleration is computed by squaring the input velocity and dividing by the
distance.

Figure 16. Deceleration logic

The deceleration will stop the telescope within the specified stopping distance. All stop
commands now call upon the new controlled stops instead of the immediate stops except the
homing command. Homing commands cannot be stopped by traditional controlled stops, so an
immediate stop is used instead for the time being. Homing commands run at a sufficiently slow
rotation rate, so an immediate stop will not damage the RT mount.

User Manual Updates
To ensure that any user knows how to operate the Control Room application, a new

updated User Manual was added to each of the forms describing how to operate the software.
Any outdated information was removed and updated.

Connection With the Hardware (Team)
Throughout this semester, the hardware and hardware team played an incredibly

important role in the development of the Control Room application. The Control Room team
made it a priority to test each and every development build on the hardware before pushing it to
the master branch. Through this testing with the hardware, more bugs were found that would not
have been found otherwise.



Team Jupiter 23

Understanding where the hardware team was with their development on certain aspects of
the telescope was an extremely critical part of communication between teams as well because
there were times when something was incomplete and the telescope was not in a good state to
run CR tests on it.

Bug Fixes and Additional Tasks
There were several bugs that the previous team documented for us to begin with this

semester. Another of the Control Room team's goals this semester was to make note of every bug
that was found and fix as many of them as possible. New bugs were found through numerous
sessions of rigorous testing, as well as normal use of the Control Room Application. The
presence of these bugs, and the ease of discovering some of them, exemplified the Control Room
Application’s strong need for testing.

The Control Room team made a significant effort to not allow these bugs to be forgotten,
adding an issue for each one to the GitHub issue tracker. While many of the existing bugs were
able to be fixed, new ones were still found that ended up getting leftover and will be a priority
for the next team. Any that were impeding progress were fixed, though each and every one will
need investigation in the future.

Fix Simulation Acceleration Timestamps
While developing the inertial testing tools, the Control Room team discovered

that the timestamps generated by the Simulation Sensor Network[1] were incorrect and
overlapping. This caused the acceleration data to appear overlapped and a mess. The
issue was fixed by applying an offset that simulated time passing between acceleration
dumps.

Receive Acceleration Time Captured from the Sensor Network
Wrapping up work from the Fall 2021 semester, the acceleration time captured

was unintegrated work that contained a bug. The Sensor Network[1] packet did not
contain the correct amount of acceleration values when an accelerometer[12] was
disconnected. This was fixed in the Embedded Sensor System code by guaranteeing that
the number of samples to send matches the samples collected.

Fix Azimuth Discrepancy
Many issues appeared with the hardware when assembling the telescope back

together and conducting inertial testing. One of the major issues discovered during testing
was that the azimuth did not rotate the correct number of degrees. All of these



Team Jupiter 24

hardware-specific issues were fixed on the azimuth-discrepancy-fix branch, which
includes motor direction changes, port text boxes, and an azimuth discrepancy constant.
These changes were left unmerged so that the simulation is still usable. The port text
boxes for the SpectraCyber[4] and weather station were swapped around and the motor
directions were switched.

The azimuth discrepancy was a roughly 10.03 degree offset between the azimuth
motor encoder and absolute encoder[22] for every 360-degree rotation. It was a mostly
consistent discrepancy but further testing revealed that the discrepancy varied by about
0.5 degrees every few rotations. A constant was applied to all computed motor ticks so
that the offset became minimal, but further testing is still required to characterize the
discrepancy.

Fix Incorrect Position Errors While Running Simulation
When running the simulation, every movement made would result in “Incorrect

Position” errors. After some investigation, the source of these errors was determined to
come from an absolute encoder[13], [22] check. Since the simulation absolute encoders do
not reflect the simulation movement of the telescope, the movement result always
appeared to be an incorrect position.

Jog Stop Fix
Previously, Jog commands could not be interrupted using traditional stop

methods. This was because Jog commands are not monitored movements, so the only
way to stop them is to do so manually, not by using the movement monitor method. The
Control Room team changed the Jog movements to be stopped using controlled stops
manually.

Fix Timestamp Issue
Initially we had tests to check that our timestamps were valid, but they were

created during Eastern Standard Time, meaning the only time stamp to receive was EST.
This semester we ensured that all units of time within the Control Room were using UTC
time so that communication with the database would work properly regarding
appointments. We also updated the times displayed to the user to display in local time, so
that regardless of where the telescope is, the time displayed will always be that of the
user’s timezone.

Fix memory leak in RemoteListener
Originally, objects that implemented the IDisposable interface in the

RemoteListener[8] class were not being properly disposed of in the event of an exception



Team Jupiter 25

being thrown. We modified the class to encompass the objects within a “using” statement,
which made sure that each instance declared within the statement was properly disposed
of, regardless of exceptions being thrown.

Fix DeleteCSVFile Failure Message
The logic in the DataToCSV class was malformed and resulted in a failure

message not being printed despite being supposed to print. This issue was caused by the
number of delete attempts being checked was not the same as the number of attempts the
DeleteCSVFileWhenDone() method took to delete the file. We fixed this by adding a
constant in the MiscellaneousConstants class so that both routines check for the same
number of attempts. Once this was done, all tests relating to the issue were passed.

Update Dropdowns for Default Values Checkbox
Since we’ve been able to test on the physical hardware of the telescope more

often this semester, we wanted to update the “Default Vals (for production)” checkbox.
Originally, the default values were set for the simulation. We updated the routine by
having the checkbox update the dropdown values to values corresponding to the physical
hardware. This includes the IP addresses and port numbers of the PLC[2] and MCU, as
well as the IP addresses of the Sensor Network[1] client and server.

Improved Testing Coverage
There were several areas highlighted both by the past semester’s team, as well as new

areas discovered that were in need of unit tests, or more testing in general. Over the course of the
semester, the Control Room team brought the unit test count up from 344 to 400. The Control
Room team is feeling more confident about the code coverage, though there are still several areas
that are in need of improvement.

Added Tests
● Sensor Network tests for DHT22, fan control, and sensor configurations
● RemoteListener test for AES-256 encryption
● Motor and Absolute Encoder discrepancy tests



Team Jupiter 26

Documentation
As new features were added over the course of the semester, documentation was also

updated alongside these features to encompass and explain the new functionality. This
functionality includes, but is not limited to, Sensor Network[1] updates, UI updates, appointment
calibration, and description of various parts of the software that the user interacts with and how
they work. All diagrams that were seen in this document are also present in the Control Room
team’s documentation folder so that they can be referenced and edited by future teams if
anything happens to change.

Inertial Testing
Extensive inertial testing documentation was created to explain all tools and parts of

inertial testing. An Inertial Testing Procedure[16] was created to document the testing procedures
put in place for inertial testing. Instructions for using TeamViewer Remote Desktop[17] were
added so that the Control Room software could be monitored remotely during tests or in the
future. Setup documentation for the Python Testing Tools[18] was also added so that any person
can set up the analysis tools on their machine and analyze their local database data.

Remaining Tasks
At the beginning of the semester, a Remaining Tasks[19] document was created to better

plan out and describe the issues listed on GitHub. This document took all of the GitHub issues
and labeled them with priority and when they should be completed by. Future teams can use this
document to plan out and gauge what their goals should be for each milestone.

Workflow Walkthrough
Created at the beginning of the semester, a Workflow Walkthrough[20] document was

created to serve as guidelines and demonstrate typical Control Room workflow. This document is
especially helpful for new team members getting up to speed and for setting general guidelines
for Control Room team members to follow.

User Manual
The Control Room team updated the User Manual[15] document with new features and UI

components. The updated manual was also added to the Control Room software and is accessible
from all forms. Some parts of the manual are still outdated because certain components need to
be removed or reworked, and that decision is up to our clients. The User Manual document
contains comments highlighting each of these outdated parts.

https://docs.google.com/document/d/1kJurZy5Rmlt9pgg3f9qcnR7MGIRgR46dzYnf-0yaomc/edit?usp=sharing
https://docs.google.com/document/d/1m5eNrPOExXGMixLi7BHTEbiE_QUxO8YpPdF9wREFqog/edit?usp=sharing
https://docs.google.com/document/d/1bwCuV5lJX-5D1dGGSGY11Q_mC1pPDzClWTKUtc605HU/edit?usp=sharing
https://docs.google.com/document/d/1ecdeRKI8cJe0zdkzhhsniZOlR7Ki8IYFYQ0V4hHgrxc/edit?usp=sharing
https://docs.google.com/document/d/1C_X7ITpnPVH8c_-ZnJ_Rbwotm3vXP_cXGYUhj2JmJFs/edit?usp=sharing
https://docs.google.com/document/d/1mzbJ0J7MzUnVulLPzXmTxSjKzZEhG1Y5/edit?usp=sharing&ouid=102317637490616382239&rtpof=true&sd=true


Team Jupiter 27

GitHub
The current Control Room team also made a significant effort to document any possible

issue that the Control Room software would need on GitHub. GitHub issue tracking has been a
critical part of the organization of the Control Room team’s inner workings and proved to be
valuable for finding information quickly. Many of the uses for the Control Room GitHub
repositor involve, but are not limited to:

● Separating milestones into projects, and organizing issues into each milestone
● Always making sure that all completed and/or duplicated issues have been closed
● Conducting code reviews using GitHub’s integrated review functionality, requesting

changes when necessary



Team Jupiter 28

Future Work
As illustrated by the Improved Testing and Bug Fixes sections, there is a lot of future

testing that will need to be done. It is important for the Control Room team to set up future team
members with a strong and clear path to follow regarding what needs to be done next.

Currently, during the Spring 2022 semester, we had the Capstone Engineering team for
support, but in Fall 2022, there will not be a hardware team to help support hardware issues as
they arise. It will be important for all members of the future Control Room team to become
familiar with the hardware and be able to troubleshoot problems if something goes wrong.

As development continues, it will be important to maintain close communication with all
teams. While the Front End and Mobile teams continue development on the MS, it will be
important for everybody to be on the same page regarding commands, and what the Control
Room team expects.

While priorities will have to be adjusted to match the engineering teams’ demands, as
well as the priorities of the York County Astronomical Society, a safe starting point would be the
existing issues in the GitHub issue tracker. Those issues contain bugs, functionality that was not
able to be completed, various areas of improvement in the codebase, and areas that need more
unit tests. Areas of improvement regarding unit tests are mentioned above; those are some of the
tasks that are left to accomplish (which are documented in GitHub). Please note that this is not a
comprehensive list, and only covers the major areas that are still in need of attention.

SpectraCyber Spectral Scan CSV
Spectral scan CSV output does not include the frequency scanned, which is crucial to

spectral scan data. The RF data stored from the SpectraCyber[4] must include the frequency
scanned during each spectral scan, and the CSV files will need to show the frequency of each RF
data sample. The clients are planning to do more with the CSV files generated from the scans, so
SpectraCyber CSV files will need to conform to the format they wish to use.

Secondary Appointments
Our clients will likely want to operate the telescope as much as possible. If there is a

public appointment running, they need to make sure that their appointments do not interfere with
it. Secondary appointments solve this problem by being a lower priority appointment that our
clients can run, and will be interrupted by any primary appointments set by the public. The
secondary appointment type already exists in the Control Room application, but there is no logic
implementing the intended behavior. The future team will need to implement the interrupting
behavior and the logic to run the secondary appointments whenever primary appointments are
not running.



Team Jupiter 29

Send Appointment Data to a User if their Appointment is Canceled
In the case that an appointment needs to be interrupted, all data collected during the

appointment should still be sent to the appointment scheduler. Currently, the data is just dropped
and never sent. The appointment is also scheduled to run immediately when the Control Room
software is opened. The future Control Room team will need to implement a way for schedulers
to get their appointment data should the appointment be interrupted before completion.

Shutdown RT Occasionally Freezing
Shutdown RT aims to call corresponding “bring down” functions of all the pieces. This

includes ending TCP clients and servers, disposing of objects, and so on. That process still
occasionally hangs up on the RadioTelescopeControllerManagementThread and will need to be
investigated.

Allow Motors to Maintain Movement Between Orientations
This is a challenging problem that will require a lot of different ideas to come together to

form a solution. The current Control Room team investigated how this might look, and found
that Assembled Moves, mentioned in the MCU’s manual[3], may be the solution. There are two
assembled move types: Blend Moves and Dwell Moves. Blend Moves allow the motors to
maintain movement between orientations, but the motors cannot change direction, so multiple
Blend Moves may need to be sent to the MCU in order to maintain motion, stopping briefly if
direction needs to be changed. An example of how Blend Moves works can be seen in Figure 17.

Figure 17. Blend Move diagram from the MCU’s manual[3], showing motion being
maintained but stopped if the direction needs to be changed



Team Jupiter 30

Implement Sensor Network Sensor Statuses
Currently, the Sensor Network[1] Server receives sensor statuses from the Sensor

Network, but it does not do anything with those bytes. This would involve implementing logic
around these bytes to output a sensor’s status on the user interface, where action can be taken if a
sensor fails. This also involves implementing the statuses in the Simulation Sensor Network,
which does not simulate any kind of sensor statuses and returns that all sensors are in a failure
state.

Characterize Accelerometer Data and Act Upon It
Accelerometer[12] data can be stored and displayed on the user interface, but nothing else

is being done with it. The team still needs to determine what “bad” accelerometer data looks like,
and how to act upon that in the sensor checks in RadioTelescopeController. To do this, perform
an FFT on each axis of the data and identify normal operating frequencies and their relations to
motor speeds. After that, come up with an upper bound of normal frequency amplitude and use
that to detect “bad” accelerometer data.

Home Telescope Before Automated Movement
The Control Room application should only allow automated movements to occur if the

telescope has been homed. Without being homed, the telescope will not be correctly oriented.
Currently, if an automated movement is requested, the telescope will attempt to perform that
movement based on wherever the motor encoders think they are, which will lead to incorrect
results. Every automated movement should check if the telescope has been homed first and if it
hasn’t, home first.

Integrate Current Transducers
The HW team aims to integrate current transducers into the telescope during summer

2022. Those transducers will interface with the PLC[2], which means the Control Room
application will need to collect, store, monitor, display, and act upon that new transducer data.
The Control Room team does not know exactly what this will look like, but future teams need to
be ready to support the integration should they need to.

Store Admin TCP Commands and Verify Timestamps
The Mobile App team will be sending admin information along with the TCP

commands[10] so that the Control Room application can log it. They are also sending timestamps
of when the commands were issued. These timestamps can be used for an extra level of
verification so that the Control Room application only accepts commands that have valid
timestamps. This way, packet sniffers cannot retransmit captured TCP packets to execute



Team Jupiter 31

commands. There will be thresholds around the timestamps to determine whether or not the
commands are valid.

Interrupt Homing by Triggering Homing Sensor Signal
Homing moves can only be interrupted with immediate stop commands, which is bad for

the life of the telescope’s motors and gearboxes. There could be a way to trick the telescope into
decelerating if its homing sensor signal is triggered manually, and an immediate stop is called
right after. There is no confirmation if this is possible yet and would involve working with the
MCU[3] and PLC[2]. If this is possible, stopping the telescope while it is homing would be much
safer.

Make Final Position Offset Values Setable from Control Room
The final position offset is applied to the telescope’s home position. It is how the Control

Room application determines the physical orientation of the telescope. Currently, the only way to
set the final position offset values is to manually SQL inject them. For the users’ sake, it would
be easier for them to set the final position offset through the Control Room application instead.
The final position offset



Team Jupiter 32

References

[1] (n.d.) SensorNetwork embedded software repository
- https://github.com/YCPRadioTelescope/YCP_RT_SensorNetwork

[2] (n.d.) Programmable Logic Controller quick start guide
- https://drive.google.com/file/d/1Ehr0wrP6aTUBFwSFX0TD-wXjXachdyYj/view?usp=s

haring
[3] (n.d.) Motor Controller Unit manual

- https://drive.google.com/file/d/1FZIEM_U2YgjXn-HmcZCzW56SdwLZef_1/view?usp=
sharing

[4] (n.d.) SpectraCyber documentation
- http://www.ncra.tifr.res.in/rpl/facilities/4m-srt/sci_iimanual.pdf

[5] (n.d.) Entity Framework Overview
- https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/overview

[6] (n.d.) MySQL Official Site
- https://www.mysql.com/

[7] (n.d.) Amazon Web Services documentation
- https://docs.aws.amazon.com/index.html?nc2=h_ql_doc_do

[8] (n.d.) RemoteListener Documentation
- https://docs.google.com/document/d/16_HVjoNUsJ0Viq6EgDgaGzdX-fo2Y_0RmtDoi1e

gdQU/edit
[9] (n.d.) TCP Protocol Overview

- https://drive.google.com/file/d/1cV8tHFrGfRm__4U1mG9G2fSVQmTVpjK5/view?usp
=sharing

[10] (n.d.) TCP Protocol In-depth documentation
- https://docs.google.com/document/d/1xSQuwcbpDC_5UnIyre336b_8t7jicmA4HsSlqfWu

xt4/edit?usp=sharing
[11] (n.d.) Fall 2021 Control Room Team Final Tech Report

- https://docs.google.com/document/d/10RPAiB_wCfEqlzePWlvaZsp6BjeSuPRP_TsW9e
VkqEU/edit?usp=sharing

[12] (n.d.) ADXL345 3-axis Accelerometer Data Sheet
- https://drive.google.com/file/d/1wJvjnoiX1-KQEXDOtdXxK6EDPpy6VVqw/view?usp=

sharing
[13] (n.d.) Honeywell SMART Position Sensor 100 deg Data Sheet

- https://drive.google.com/file/d/1n9GoiZGoPCNxCLIzkwQu4hh-jnUnLp0B/view?usp=sh
aring

[14] (n.d.) Teensy 4.1 Microcontroller documentation
- https://www.pjrc.com/store/teensy41.html

[15] (n.d.) User Manual

https://github.com/YCPRadioTelescope/YCP_RT_SensorNetwork
https://drive.google.com/file/d/1Ehr0wrP6aTUBFwSFX0TD-wXjXachdyYj/view?usp=sharing
https://drive.google.com/file/d/1Ehr0wrP6aTUBFwSFX0TD-wXjXachdyYj/view?usp=sharing
https://drive.google.com/file/d/1FZIEM_U2YgjXn-HmcZCzW56SdwLZef_1/view?usp=sharing
https://drive.google.com/file/d/1FZIEM_U2YgjXn-HmcZCzW56SdwLZef_1/view?usp=sharing
http://www.ncra.tifr.res.in/rpl/facilities/4m-srt/sci_iimanual.pdf
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/overview
https://www.mysql.com/
https://docs.aws.amazon.com/index.html?nc2=h_ql_doc_do
https://docs.google.com/document/d/16_HVjoNUsJ0Viq6EgDgaGzdX-fo2Y_0RmtDoi1egdQU/edit
https://docs.google.com/document/d/16_HVjoNUsJ0Viq6EgDgaGzdX-fo2Y_0RmtDoi1egdQU/edit
https://drive.google.com/file/d/1cV8tHFrGfRm__4U1mG9G2fSVQmTVpjK5/view?usp=sharing
https://drive.google.com/file/d/1cV8tHFrGfRm__4U1mG9G2fSVQmTVpjK5/view?usp=sharing
https://docs.google.com/document/d/1xSQuwcbpDC_5UnIyre336b_8t7jicmA4HsSlqfWuxt4/edit?usp=sharing
https://docs.google.com/document/d/1xSQuwcbpDC_5UnIyre336b_8t7jicmA4HsSlqfWuxt4/edit?usp=sharing
https://docs.google.com/document/d/10RPAiB_wCfEqlzePWlvaZsp6BjeSuPRP_TsW9eVkqEU/edit?usp=sharing
https://docs.google.com/document/d/10RPAiB_wCfEqlzePWlvaZsp6BjeSuPRP_TsW9eVkqEU/edit?usp=sharing
https://drive.google.com/file/d/1wJvjnoiX1-KQEXDOtdXxK6EDPpy6VVqw/view?usp=sharing
https://drive.google.com/file/d/1wJvjnoiX1-KQEXDOtdXxK6EDPpy6VVqw/view?usp=sharing
https://drive.google.com/file/d/1n9GoiZGoPCNxCLIzkwQu4hh-jnUnLp0B/view?usp=sharing
https://drive.google.com/file/d/1n9GoiZGoPCNxCLIzkwQu4hh-jnUnLp0B/view?usp=sharing
https://www.pjrc.com/store/teensy41.html


Team Jupiter 33

- https://docs.google.com/document/d/1mzbJ0J7MzUnVulLPzXmTxSjKzZEhG1Y5/edit?u
sp=sharing

[16] (n.d.) Inertial Testing Procedure
- https://docs.google.com/document/d/1kJurZy5Rmlt9pgg3f9qcnR7MGIRgR46dzYnf-0ya

omc/edit?usp=sharing
[17] (n.d.) Team Viewer Remote Desktop

- https://docs.google.com/document/d/1kJurZy5Rmlt9pgg3f9qcnR7MGIRgR46dzYnf-0ya
omc/edit?usp=sharing

[18] (n.d.) Python Testing Tools Setup
- https://docs.google.com/document/d/1bwCuV5lJX-5D1dGGSGY11Q_mC1pPDzClWTK

Utc605HU/edit?usp=sharing
[19] (n.d.) Remaining Tasks

- https://docs.google.com/document/d/1ecdeRKI8cJe0zdkzhhsniZOlR7Ki8IYFYQ0V4hHg
rxc/edit?usp=sharing

[20] (n.d.) Workflow Walkthrough
- https://docs.google.com/document/d/1C_X7ITpnPVH8c_-ZnJ_Rbwotm3vXP_cXGYUhj

2JmJFs/edit?usp=sharing
[21] (n.d.) DHT22 Datasheet

- https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
[22] (n.d.) Midi Range Inductive Angle Encoder

- https://drive.google.com/file/d/13ax3rYI_46NK4k0j9LQoruXowl3f3kFk/view?usp=shari
ng

https://docs.google.com/document/d/1mzbJ0J7MzUnVulLPzXmTxSjKzZEhG1Y5/edit?usp=sharing&ouid=102317637490616382239&rtpof=true&sd=true
https://docs.google.com/document/d/1mzbJ0J7MzUnVulLPzXmTxSjKzZEhG1Y5/edit?usp=sharing&ouid=102317637490616382239&rtpof=true&sd=true
https://docs.google.com/document/d/1kJurZy5Rmlt9pgg3f9qcnR7MGIRgR46dzYnf-0yaomc/edit?usp=sharing
https://docs.google.com/document/d/1kJurZy5Rmlt9pgg3f9qcnR7MGIRgR46dzYnf-0yaomc/edit?usp=sharing
https://docs.google.com/document/d/1kJurZy5Rmlt9pgg3f9qcnR7MGIRgR46dzYnf-0yaomc/edit?usp=sharing
https://docs.google.com/document/d/1kJurZy5Rmlt9pgg3f9qcnR7MGIRgR46dzYnf-0yaomc/edit?usp=sharing
https://docs.google.com/document/d/1bwCuV5lJX-5D1dGGSGY11Q_mC1pPDzClWTKUtc605HU/edit?usp=sharing
https://docs.google.com/document/d/1bwCuV5lJX-5D1dGGSGY11Q_mC1pPDzClWTKUtc605HU/edit?usp=sharing
https://docs.google.com/document/d/1ecdeRKI8cJe0zdkzhhsniZOlR7Ki8IYFYQ0V4hHgrxc/edit?usp=sharing
https://docs.google.com/document/d/1ecdeRKI8cJe0zdkzhhsniZOlR7Ki8IYFYQ0V4hHgrxc/edit?usp=sharing
https://docs.google.com/document/d/1C_X7ITpnPVH8c_-ZnJ_Rbwotm3vXP_cXGYUhj2JmJFs/edit?usp=sharing
https://docs.google.com/document/d/1C_X7ITpnPVH8c_-ZnJ_Rbwotm3vXP_cXGYUhj2JmJFs/edit?usp=sharing
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://drive.google.com/file/d/13ax3rYI_46NK4k0j9LQoruXowl3f3kFk/view?usp=sharing
https://drive.google.com/file/d/13ax3rYI_46NK4k0j9LQoruXowl3f3kFk/view?usp=sharing

