
Visualization Technical Report
Team Members: Derek Herr

YCAS Radio Telescope Project
Senior Software Design Project II, Spring 2022

Prof. Donald J. Hake II

York College of Pennsylvania

Table of Contents 2

Abstract 4

Introduction 5

Background 6

Design 7

Performance Optimizations 7

Star Interaction System 8

Telescope Model Accuracy Update 9

Virtual Reality Optimizations 9

Addition of Post-Processing and Lighting
Effects

10

Oculus Quest 2 Demonstration Project 10

Addition of New Geometry 10

Implementation 11

Performance Optimizations 11

Star Interaction System 14

Telescope Model Accuracy Update 17

Virtual Reality Optimizations 18

Addition of Post-Processing and Lighting
Effects

19

Oculus Quest 2 Demonstration Project 21

Addition of New Geometry and Menu 22

Future Work 23

References 24

Abstract

Team Saturn’s contribution to the radio telescope project for the York College

Astronomical Society (YCAS) involves the development of two Unity programs.

The first program is a game that consists of a scale model of John C. Rudy County
Park where the radio telescope will be located with a model of the telescope in place. This
game can be played using either traditional mouse and keyboard controls or by using an
HTC Vive Virtual Reality (VR) headset. In this game, the player can manipulate the telescope
model and highlight different parts of the telescope to learn what each of them do. The
purpose of this game is to be used as an educational tool and for community outreach to
create interest in astronomy.

Figure 1: A screenshot of the educational game. (2019)

The second program is a Simulation of the radio telescope hardware. This program
acts as an interface that interacts with the Control Room, receiving commands from the
Control Room as the actual hardware would receive them and executing them on a virtual
telescope model as the hardware would execute them. The purpose of this hardware
Simulation is to allow other teams to test their changes without requiring that they have
access to the hardware, greatly increasing turnaround times on new features and allowing
for much easier troubleshooting.

Figure 2: The hardware Simulation after it has finished initialization.

The team’s primary focus for the Spring 2022 semester was on the continued
development of the virtual reality and PC visualization programs. The goals for this
semester were to completely update the visualization programs to be fully shippable by the
end of the semester. New features along with multiple optimizations were added to both
the virtual reality program as well as the mouse and keyboard program.

Introduction

Team Saturn this semester primarily consisted of a single member, with help being
provided by the mechanical engineers where necessary when it came to updating the
telescope model.

This semester continued the work started in 2019 on the educational game. At the
beginning of the semester, this educational game was roughly functional, however it had
some massive optimization problems as well as outdated models and frameworks. The
primary goal of this semester was to fix any game breaking bugs and optimize the program
to the point of being fully functional and shippable to any VR device as well as any PC.
Throughout the semester, multiple accessibility additions were made, as well as some new
features. A main struggle was getting the program operational in terms of performance,
thus, many changes were made to optimize the program. An updated version of the model
was also provided in conjunction with the mechanical engineers. Lastly, many
accommodations were made so the program could be compatible with any VR device,
including the Quest 2, which also resulted in a portable Quest 2 APK project being
developed for quick demonstration purposes.

Given that no development work has been done on the simulation this semester, this
technical report will not focus on it. For information on the Simulation, see the technical
report from Fall 2022[3].

Background

The programs that Team Saturn develops are all Unity[5] projects. Unity is a powerful
game engine capable of working with both traditional mouse and keyboard (M&K) controls
as well as VR controls. Unity projects consist of a list of “game objects,” each game object
having a list of properties associated with it. These game objects can be invisible and only
work as logic handlers, or can be visible models such as the radio telescope model that we
use.

Game objects are able to have scripts attached to them. These scripts are written in
C#, capable of using standard C# libraries as well as Unity’s scripting library[6] to
manipulate how game objects act and interact with each other and the player. The VR
toolkit (VRTK) library[7] is also used for the purposes of handling VR controls for the VR
educational game, with SteamVR[8] being used as a means of connecting the VR headset to
the Unity program. The VR headset that Team Saturn makes use of for the VR educational
game is the HTC Vive[9], a VR headset supported by Unity, the VRTK library, and SteamVR.
Thanks to the compatibility provided by SteamVR the program also runs on an Oculus
Quest 2 and any other SteamVR supported device.

Unity is used not only for its VR support and game development features for the
purposes of the educational game, and its GUI for the purposes of the Simulation, but also
for the ease of integration with the Control Room. Since both the Control Room and Unity
scripts are written in C#, communication between the two is relatively simple, making use
of a TCP connection and Modbus registers to pass information back and forth, the exact
same connection that the Control Room would make with the hardware; this common
interface is what allows the Simulation to act as a proxy for the hardware to test the Control
Room’s behavior and how the hardware would react to its commands.

Build instructions, how to run the Simulation, and how to connect it to the Control
Room can all be found on the Simulation’s Github repository wiki section[10].

Design

Unity is somewhat different in that it uses GameObjects. GameObjects can have

scripts attached to them which are then compiled together and run when enabled. Basically,
all interactions between classes are done through GameObjects. GameObjects are added to
the world and then have scripts attached to them. Scripts are like classes, and GameObjects
are like instances. So for a class to have an instance of another class, it must be a script
attached to an object and have a reference to an object (which can be the same object that it
is attached to) that has the script that it wants access to attached.

Performance Optimizations

Upon reviewing the 2019 project, multiple red flags were evident in terms of
performance and optimization. Most notably, the “Starfield” script, which is responsible for
reading the star positions from a CSV file and displaying them as particles was both plagued
with bugs and consuming much more frametime than was acceptable. In addition, the grass
models were exponentially expanding the triangle count by a degree that was unacceptable.
These two issues were the highest priority in development as they would prevent the
completion of a shippable product.

Upon reviewing the “Starfield” script, it was noticed that the CSV was being read on
every frame, as was the particle system. The current design was set up in a way that had the
Unity Particle System initializing a particle for each star every frame. Since the stars
themselves are not changing positions, the strategy for fixing this bug was to restructure
the Unity Particle System so that the stars themselves were only initialized once, which
would only require the CSV to be only read once instead of every frame. This would
eliminate the constant particle initialization and limit the CSV file reader to initializing only
once.

In addition, it was also noticed that the grass models(of which there were hundreds)
were 3D models instead of 2D models. Because of this, the triangle count of the program
was extremely high(around 1.2 million triangles). This was significantly bogging down the
framerate of the program and represented a critical problem. The solution to solving this
issue was to address the triangle count by creating a new grass model. Originally it was
planned to use a free Unity asset as a simple substitution, however because there were
none available, an original grass model was created in Blender[12]. The design of this
model focused on being 2D and simplistic to make it easy to apply texturing. The 2D factor
reduced the triangle count considerably and improved performance(proof shown in
Implementation section).

Star Interaction System

The Star Interaction system is a system proposed to visually display the telescope’s
data points within the 3D space. The player should be able to interact with the points in the
sky to gain visual information on that data point. In addition, this system can be used to
label stars and virtually label any point in the sky. A rough design for this system is shown
below:

Figure 3: Sky Interaction Rough Design Visual

Upon designing the Sky Interaction System, the choice was made to initialize a new
raycast[13] using an existing raycast system to select data points. Upon selection, a new
user interface would appear to display that data point’s information. The data within the
data points(along with their position) would be read from a CSV, similar to the “Starfield''
script.

Actually creating the data points was the challenge in this system, most notably the
positioning of the data points. Because there was currently no system to convert RA(Right
Ascension) and DEC(declination) value[14], a new one needed to be created. That process
included using trigonometry and Unity’s vector system to manipulate the spawns of the
data points.

The overall system reads a CSV full of the data points’ positions and their data,
initialize all data points in their correct positions as new objects, initialize a new raycast

object that detects data points on user input, and gather data point info and send it to the
user interface and display it on screen.

Telescope Model Accuracy Update

It was quite obvious that the current Telescope model was out-of-date in both the PC
and VR educational game. To fully update the model, the program required modifications to
the existing models, the addition of new models, and the animation of the new models.

In order to efficiently update the telescope model, close coordination with the
mechanical engineers was required. The method for updating the telescope was to hold
multiple meetings with the mechanical engineers to identify missing parts and incorrect
parts, acquiring new .STL models of missing parts, using Blender to convert those models to
be compatible with Unity using .OBJ, and using the help of the mechanical engineers to
correctly place and scale those new models. From there, all that was required was
animating the new parts by altering their respective transformation positions, which was
accomplished using an existing system. New part descriptions were also acquired from the
mechanical engineers.

Virtual Reality Optimizations

The main goal for this semester in regards to the VR simulation was to get it up to
date and operational with the updated telescope model and add controls to the newly
implemented sky interaction system. This included modifications to the existing control
scheme and the addition of new UI elements. The VR selection of parts and stars was
somewhat buggy and inconsistent. The design to fix this issue was to create a visual pointer
that showed the player what they were selecting and making the selection a button press
instead of a continuous loop.

In addition, Oculus Quest 2 support was highly desirable for the portability, as well
as ease of development and deployment. The main method of addressing those aspects was
to utilize the already existing SteamVR API. By registering a developer account and making
small modifications to the Quest 2 and updating the SteamVR api, Quest 2 support(along
with any other SteamVR compatible device) is now supported for use in the project.

Addition of Post-Processing and Lighting Effects

The original project did not have any form of post-processing or a proper setup of
the lighting. Which became a goal to add to the project to improve the look of the project
and hopefully improve the visual aspect of the project.

The plan was to use Unity’s standard post-processing api to add the post processing
to the program. By testing each and every setting we would be able to apply the correct
effects that fit with the program without impacting the performance. These effects
included; anti-aliasing with FXAA[17], introduction of shadows, grain, motion blur,
ambient-occlusion[18], etc.

Also, we would use Unity’s built-in lightmap baker to optimize and visually improve
the lighting effects. This would be done by tagging gameobjects that were static to produce
a lightmap of baked lighting effects to be used instead of real time lighting.

Oculus Quest 2 Demonstration Project

One valuable asset that the Quest 2 provides is the ability to be completely
standalone and wireless. The design plan to support this was to create an entirely new
Unity Project and import the existing assets and scenes(much like a copy). The difference
being in the project settings; instead of using the high definition render pipeline we would
use the universal render pipeline which supports the VR development to apk, replace high
poly models with mobile models for performance, utilize the Oculus OpenXR api for VR
controls, and create a small animation showcasing the telescope without user input.

Without user input, the program could wirelessly be shown to an audience without
explaining the control scheme and without the risk of motion sickness. In addition, it makes
displaying the telescope much more efficient and accessible. Also, the Quest 2 is completely
standalone with this program, meaning a supercomputer is not required for exhibition.

Addition of New Geometry

As a small addition, we wanted to add some new geometry and foliage to the scene
to make it seem more lively. The main method of doing this was to use the images of John C.
Rudy County Park along with google maps to attempt to replicate the feel of the park with
premade free Unity assets. Also, a new main menu screen was added for the
implementation of a graphical settings system. The main menu was added, however the
settings system was not.

Implementation

Performance Optimizations

In order to eliminate the performance hit of the star system script, a new function to
read the star CSV was created with the existing code so the star CSV would ultimately only
be read at the beginning of the program. This ultimately broke the Unity particle system
that was being used to spawn the stars, so accommodations were made so that the particle
system would work with this new approach.

Figure 4: Altered Unity Particle System Adjusted for Fixed “Starfield” Script

This new approach improved the runtime cost of the “Starfield” script from 33.14ms
to 3.52ms in the playerloop(note that the playerloop includes all scripts within the scene,
this change was noted after fixing the “Starfield'' script). It was also able to improve the
framerate from 36.4 fps to 306.1 fps, which ultimately reduced the frametime from 27.5ms
to 3.3ms on the PC version. (these changes also affect the VR version).

Figure 5: Unity profiler view of before and after “Starfield” script fix. (grass was disabled)

In order to fix the grass models, the most obvious solution was to just find an
alternative model that did not have an extremely high poly count like the existing one.
However, after searching the Unity assets we were unable to find a sufficient asset that
could replace the current one, so one had to be created. To do this we focused on creating a
very minimalistic grass model consisting of just a couple of 2d planes meshed together
using Blender. After this, the UV mappings of the model were created so the grass texture
would be oriented correctly.

Figure 6: Finished rendition of the grass model and correct UV mappings with an example
grass texture.

After creating a finished model of the new grass, the method of inclusion was to use
Unity’s terrain system to “paint” the model around the 3D environment. However, because
the Unity version was outdated and the current render pipeline did not support 3D mesh
painting, these models were simply hand placed into the environment. This replacement
caused a significant performance improvement as noted in the diagram below.

In addition, a new terrain texture was created in Blender with generated normal
maps in order to fix a bug with the pavement being highly reflective like glass.

Figure 7: Before and after visualization of the new grass model and new pavement terrain
texture. Notably the frametime improved from 33.4ms to 3.3ms. Notably, the triangle count

of the program reduced from 1.2 million triangles to a measly 11.1k triangles, which is
fantastic.

Figure 8: Placement of grass models, grouped with clusters and embedded within the
Foliage object.

Star Interaction System

The first implementation of the star interaction system was to create the actual
interactable object itself. This object would later be spawned and store CSV gathered
information. A triangle design was chosen because it was simplistic to create within
Blender and would be able to highlight an area in the sky without being too much of an
eyesore. A new raycast object named “SkyRay” was created with an accompanying script,
which was modeled after the existing “Highlight_Target” script(raycast). As a little addition,
an animation was created so that when the triangle object detects a raycast, it enables an
enlargement animation to indicate that the player can select the object.

Figure 9: First rendition of the triangle star object. On the left it can be seen that the object
is always facing an object of focus(cube). On the right the triangle object is expanded on a

mouse hover.

The next and most difficult part of the implementation was reading the CSV data,
spawning the triangle objects in their correct position in relation to the “Starfield” script,
and storing the data within the newly spawned star objects.

The first step was creating a new “Sky_Spawner” script reads a corresponding CSV
named “Sky_Data” using a C# System.IO filereader. This data was then used to spawn the
triangle objects in their respective positions and store the information contained within the
CSV for that data point.

Firstly, “Sky_Spawner” reads the CSV line by line with each line representing a new
triangle object; this was done so that the CSV can be easily manipulated within Excel and is
very similar to how the “Starfield” script works. The script then uses the gathered RA and
DEC(which are cartesian coordinates) values to place the triangle object in the correct
position. However, because Unity is a 3D program that uses polar coordinates, this was
incompatible. In order to convert the cartesian coordinates to polar coordinates a new
method was created that used an existing sequence of equations (Trigonometry). After
obtaining the converted coordinates, the position vectors are then normalized and
expanded to the same distance as the “Starfield” stars. After initializing the parent of each
triangle object to the “Starfied” object, the position of each triangle object is accurate and
rotates with the stars.

Figure 10: Visualization of triangle object spawns in relation to the star system.
Highlighted is the big dipper, with triangle objects successfully spawned on both edges.

Figure 11: Excel Sheet of “Sky_Data”: RA, DEC, DIST(lightyears), Label, Desc, Image
Name.

After successfully spawning the triangle objects in the correct positions, the next
goal was to create a user interface that would display the information contained within the
CSV and also the corresponding .jpg image. The design of this UI can be seen below in figure
12.

Figure 12: Visual of sky interaction UI. On the right is the UI display after selecting the
triangle object for the star “Polaris”. The label can be seen at the top, the corresponding .JPG

in the middle, the RA and DEC values right below, and the description is then listed at the
bottom.

In order to list all the CSV data onto the GUI, a script named “Star_Object” is attached
to each initialized triangle object. This script contains the CSV information when the
triangle object is spawned from “Sky_Spawner''. It also contains the logic for when a user
hovers over and clicks the triangle object. When clicked, a GUI object named “StarObjectUi''
is sent all the corresponding information, which is then listed into the text objects and
displayed to the user.

One complicated part of this was the .JPG image. In order to display the
corresponding .JPG image for each triangle object, the .JPG name is searched within a folder

named “Sky_Interaction_Data” which contains all the .JPG images and the “Sky_Data” CSV
file. After finding the .JPG image, the bytes are added to an image array and displayed on
screen.

Figure 13: The “Sky_Interaction_Data” folder contained within the “StreamingAssets” Unity
folder.

We felt that our client would want to change this information(addition and deletion
of data points) so we enabled and utilized a special folder in Unity named the
“StreamingAssets” folder. Within this folder absolutely nothing is modified or compiled on a
Unity build. What this means is that the user can edit and add to the CSV so that new points
are displayed without compiling an entirely new build from the Unity project.

Telescope Model Accuracy Update

In order to accurately update the existing telescope model we met with mechanical
engineers to identify; what parts are outdated, what parts are missing, and what parts
needed to be removed. After identifying those specifics, we moved along to getting the new
part models and removing/modifying the existing part models.

In terms of additions, most of the top of the telescope had to be reimported as much
of it was outdated and did not match with the newly imported parts. Those parts included;
dish, supports1, supports2, main dish support, frame, embedded systems box, electrical
cabinet, and the funnel pipe assembly. All of those parts were given as a .STL file from one
of the mechanical engineers. These .STL files were then imported into Blender and then
exported as a .OBJ file. Then these files were imported and scaled into Unity. The
mechanical engineers were able to provide part descriptions for each new part. After
correctly animating each part using an existing expansion script, the model was completely
updated.

Figure 14: Visual expansion of all updated telescope parts.

Virtual Reality Optimizations

In order to optimize the VR experience, numerous modifications had to be made in
regards to the UI and control scheme.

For the VR version, a separate sky interaction GUI was copied and altered to fit
within the eyesight of a VR space. In addition, a selection indicator was modified so that it
would always be visible for selection purposes. Also, the material/shader was fixed so that
it now renders correctly. Also, the control scheme was modified so that the trigger input
would only be checked when pressed instead of within the game loop. That meant that the
selection process was easier since it would activate only on one button press instead of a
button hold. This required a new function and was done mainly as an accessibility
modification.

’

Figure 15: VR controller with line renderer indicator, selection of star object is shown.

Addition of Post-Processing and Lighting Effects

The main implementation of the post-processing effects[15] was the addition of the
Unity post-processing api. This versatile addition allowed the quick inclusion of multiple
different types of post-processing.

Figure 16: A summary of the post-processing volume that was added. The included
post-processing effects were; Visual Environment(Skybox), Bloom, Exponential Fog, HDRI

Sky(Skybox), Film grain, and Color Adjustments.

In addition to the post-processing effects, a new skybox cubemap was created in
photoshop. This consisted of 6 images bound together to form a new skybox for the
background of the program.

Figure 17: The newly created skybox images meshed together to form a skybox.
These images were originally a dark cloudy sky that was darked and altered to give off a

less constant color profile in the sky.

Also, shadows and baked lightmaps[15] were added for performance related
purposes as well as visual additions. The baked lightmaps were created using Unity’s
lighting system, the only modifications that had to be made were marking static objects and
then baking the lightmaps themselves. Lightmaps are basically a faster way to render
lighting by prerendering lightness values into images. Also, a new telescope material was
created to match the white paint.

Figure 18: Example of one of the baked lightmaps. These are read and applied to objects as
a means of lighting them without doing the computations in real time.

Figure 19: Before and after applying all post-processing effects, shadows, and lighting
effects.

After applying and adding all of these effects, using the Unity quality system, two
separate scenes were created; MK-HIGH & MK-LOW. MK-HIGH is the high quality version of
the mouse and keyboard program(this includes all post-processing at highest quality) and
MK-LOW(most post-processing is disabled or at lowest quality).

Oculus Quest 2 Demonstration Project

In addition to the main Unity project, a separate Unity project was created for
development of an Oculus Quest 2 apk. This project uses the universal render pipeline and
the Oculus OpenXR[16] api to support the Quest 2. Through this project, a small visual
demo was created as a quick introduction to VR and the project. This demo was created by
exporting the previous project’s main assets and then animating a small visual that would
display the telescope as well as its parts.

Figure 20: The first rendition of the Oculus Quest 2 apk demonstration.

Addition of New Geometry and Menu

Also, new tree, bush, and bench models were added to simulate John C. Rudy
Country Park. These models were obtained from the Unity Asset Store and are 100% free
use. Some of these new additions are shown below:

Figure 21: The rendered Unity scene with added tree, grass, and bench models(left). A
reference image of John C. Rudy County Park(right).

Lastly, a new main menu was added to the PC version of the program. This was
originally going to allow a quality settings adjustment menu, however there was not
enough time budgeted to finish this aspect. Instead, there are two builds of the game
labeled MK-HIGH(high quality) and MK-LOW(low quality). The only difference between
these two builds is that MK-HIGH has post-processing effects turned on and is rendered at
the highest quality setting in Unity. MK-Low has no post-processing effects and is rendered
at the lowest quality possible in Unity.

Figure 22: An added main menu for the PC version of the educational game. The quality
version is listed in the top left corner.

Future Work

Update Unity Project to a more stable LTS version

Updating the current project to a new Unity version would open up the project to
more features and more importantly fix some of the existing bugs with the VR
portion(shadow bug). Also, updating this to a new render pipeline would also improve
performance and allow apk development on the Quest 2, this would allow the standalone
use of the Quest 2 without any cables, similar to how the Quest 2 demonstration project
works. This would require a significant amount of changes to the VR controls and some
modifications to the materials and lighting. Most of the scripts and functionality would be
unaffected.

Additions of New Scenes and Demonstrations

Time did not allow for a visual demonstration of the telescope within the actual
visualization program. A cinematic that goes through the telescope operation and all its
parts would be a pretty useful learning tool. Also, with the newly added main menu a
settings option could be added on the PC program to adjust the quality settings instead of
two separate builds.

Polish of New and Old Systems

We still feel that some additional improvements could be made to both the old and
new systems. With the sky interaction system, a program could be built so it is easier to add

and delete data points, either through user input or through reading a database of read data
points from the real telescope. Also, error checks need to be added to the sky interface
system, for instance, a correct field needs to be entered into the CSV for the system to work
(what if they don’t want a description?).

The VR controls still seem to need some improvements, particularly with the
movement of the player character. Currently, the movement is bound to a touch sensor on
the VR controllers, which often pops up annoyingly without the meaning to move. Also the
movement in general is just disorienting in VR due to the movement sometimes.

Suggested Features That Have Not Yet Been Implemented

Many proposed features both from this semester and from previous semesters have
never been implemented. This includes but is not limited to; inclusion of the sun, inclusion
of the moon, a daytime mode, a daytime to nighttime transition, a telescope the player can
pick up and zoom with, tracking of a data point with the telescope, a control tutorial,
transitions, and a sound system.

References

[1] Modbus protocol, https://modbus.org/

[2] log4net library, https://logging.apache.org/log4net/

[3] Spring 2021 Team Saturn Technical Report, https://docs.google.com/document/d/...

[4] Fall 2020 Team Saturn Technical Report, https://docs.google.com/document/d/...

[5] Unity, https://unity.com/

[6] Unity scripting library, https://docs.unity3d.com/Manual/index.html

[7] VR toolkit library, https://vrtoolkit.readme.io/docs

[8] SteamVR, https://store.steampowered.com/app/250820/SteamVR/

[9] HTC Vive, https://www.vive.com/us/

[10] Simulation GitHub repository wiki,
https://github.com/YCPRadioTelescope/TelescopeVisualization/wiki

[11] Fall 2021 Control Room Technical Report, https://docs.google.com/document/d/…

[12] Blender https://en.wikipedia.org/wiki/Blender_(software)

[13] Raycast https://en.wikipedia.org/wiki/Ray_casting

https://modbus.org/
https://logging.apache.org/log4net/
https://docs.google.com/document/d/11sJlu2ekBs8dAL5aqUdGwcQ_hYzjZ6lnIcOFaOe15jc/edit?usp=sharing
https://docs.google.com/document/d/1S2j0x8MOVsSFGO6r72ojcyCDQAyGYPNemCEBkn8cB-g/edit?usp=sharing
https://unity.com/
https://docs.unity3d.com/Manual/index.html
https://vrtoolkit.readme.io/docs
https://store.steampowered.com/app/250820/SteamVR/
https://www.vive.com/us/
https://github.com/YCPRadioTelescope/TelescopeVisualization/wiki
https://docs.google.com/document/d/10RPAiB_wCfEqlzePWlvaZsp6BjeSuPRP_TsW9eVkqEU/edit?usp=sharing
https://en.wikipedia.org/wiki/Blender_(software)
https://en.wikipedia.org/wiki/Ray_casting

[14]RA & DEC

https://www.celestron.com/blogs/knowledgebase/what-are-ra-and-dec#:~:text=RA%20(
right%20ascension)%20and%20Dec,like%20latitude%20on%20the%20Earth

[15] Post-processing https://en.wikipedia.org/wiki/Video_post-processing

[16] OpenXR https://www.khronos.org/openxr/

[17] FXAA
https://en.wikipedia.org/wiki/Fast_approximate_anti-aliasing#:~:text=Fast%20approxima
te%20anti%2Daliasing%20(FXAA,a%203%2Dclause%20BSD%20license.

[18] Ambient-Occlusion https://en.wikipedia.org/wiki/Ambient_occlusion

https://www.celestron.com/blogs/knowledgebase/what-are-ra-and-dec#:~:text=RA%20(right%20ascension)%20and%20Dec,like%20latitude%20on%20the%20Earth
https://www.celestron.com/blogs/knowledgebase/what-are-ra-and-dec#:~:text=RA%20(right%20ascension)%20and%20Dec,like%20latitude%20on%20the%20Earth
https://en.wikipedia.org/wiki/Video_post-processing
https://www.khronos.org/openxr/
https://en.wikipedia.org/wiki/Fast_approximate_anti-aliasing#:~:text=Fast%20approximate%20anti%2Daliasing%20
https://en.wikipedia.org/wiki/Fast_approximate_anti-aliasing#:~:text=Fast%20approximate%20anti%2Daliasing%20
https://en.wikipedia.org/wiki/Ambient_occlusion

