
A ROLL DOWN THE LANE

MEASURING BOWLING BALL DYNAMICS

FROM THE INSIDE

A Master’s Project and Paper in Engineering Science

by

Donald J. Hake II

October 3, 2014

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

 Project based upon previous research conducted
and presented for my MSCS degree in 2002 w/Dr.
Null

 SMARTDOT system: Sensor module placed in
finger hole of bowling ball

 Recorded ambient light data as ball rolled down
lane (rotating) under overhead lighting

 Used FIR filtering to isolate sinusoidal waveform
related to rotation of ball

 Located revolutions from peaks and valleys

 Calculated angular (RPMs) and linear (MPH)
velocities

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

Typical SMARTDOT module ambient light waveform

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

 REVMETRIX system expands upon original SMARTDOT system to

develop a practical accelerometer-based bowling performance

analysis system that acquires the “internal” perspective of the

dynamics of the ball

 Proposed using accelerometer in 2002 paper

 Composed and submitted project proposal to Dr. Wolpert in 2007

- 2008

 Development started in 2008

 First real world data collection in 2010

 Waveform filtering and analysis in MATLAB in 2010 – 2012 as

part of EE 453, EE 551 and EE553 w/Dr. Morales

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

 A dozen years after SMARTDOT project, an inexpensive,

portable system that objectively quantifies a bowler’s

execution and performance still does not exist

 Existing systems (CATS, Brunswick’s “Throbot”, USBC’s

E.A.R.L. bowling robot) all rely on expensive, non-portable

instrumentation affixed to the lane to observe the ball

externally

 http://www.youtube.com/watch?v=s8yMFdPD68c

 http://www.youtube.com/watch?v=QEeLNxlKRrU

http://www.youtube.com/watch?v=s8yMFdPD68c
http://www.youtube.com/watch?v=QEeLNxlKRrU

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

 Consists of three components:

❖SenseModule (SM): in-situ sensor module

❖ComModule (CM): IR interface between
SenseModule and RevMetrixApp

❖RevMetrixApp (RMApp): archival, analysis,
and presentation software application
running on smartphone, tablet, or PC
(MATLAB and MS Excel were used for
analysis purposes on this project)

 Ultimately, Bluetooth connection might
be possible directly to RevMetrixApp

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

MOTIVATION

MOTIVATION FOR SUCH A SYSTEM

 RevMetrix system fills several basic needs:
❖Records and quantifies release parameters:

❖Ball speed – initial linear velocity

❖Loft – distance ball travels before impacting lane

❖Lift – initial angular velocity

❖Tilt – angle between axis of rotation and lane
surface

❖Correlates release parameters to subsequent
ball reaction (how linear and angular velocities,
and axis tilt change from release to impact)

❖Allows comparison across multiple frames,
games, lane conditions, bowling balls, etc.

MOTIVATION FOR SUCH A SYSTEM

 Success (higher scores) requires identifying and
maintaining a consistent “line” to strike pocket

 Lane conditions (lane oil distribution) can vary
significantly between bowling balls, frames, games,
adjacent lanes, bowling establishments

 Bowlers compensate by:
❖ Altering how they release ball, which increases/decreases

amount of hook

❖ Altering release location relative to foul line, allowing more
or less room for ball to hook, and/or causes ball to
encounter more or less lane oil on path to pins

❖ Altering angle of release relative to foul line – angling ball
out toward gutter, or in towards pins, for same reasons as
above

MOTIVATION FOR SUCH A SYSTEM

 Difficult to assess whether changing ball

reaction is due to changing oil pattern or

inconsistent delivery/release

 No convenient, widely available method

to assess consistency of

delivery/release

 Reviewing video is slow, tedious,

imprecise, and does not facilitate

comparison of multiple shots

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

PROJECT SCOPE

AND

DEVELOPMENT

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

PROJECT SCOPE

 SenseModule and ComModule hardware
design and development

 Embedded software design and
development, evolving from manual raw
data collection platform to fully autonomous
operation

 Raw data analysis and filtering

 Automated algorithms for segmenting and
componentizing waveforms and extracting
metrics useful to bowler

REVMETRIX PERFORMANCE ANALYSIS SYSTEM

PROJECT SCOPE

 SenseModule captures data:
❖Collects, stores, times stamps sensor data

(ambient light, 3-axis acceleration readings)

❖Contains internal DB to store multiple ball
records before upload is required

❖Uploads data to RevMetrixApp (through IR
software UART to ComModule)

 RevMetrixApp is the “brains”
❖Archives data from SenseModule

❖Analyzes, calculates, and presents results

❖Analysis presented here used MS Excel and
MATLAB for analysis and presentation purposes

REVMETRIX DEVELOPMENT

 Phase 1: Bench-Top SenseModule Breadboard

❖SenseModule and ComModule developed using

F930DK development kit from Silicon Labs

❖ Included Silicon Labs IDE, Keil’s assembler and C51

compiler

❖Breadboard prototypes used to develop basic

architecture and functionality, Ball Record DB,

communications

REVMETRIX DEVELOPMENT

 Phase 2: Prototype Data Collection
❖3-axis acceleration had not been collected from

within ball

❖Real-world data had to be collected first before
autonomous operation could be achieved

❖Schematic, lay out PCBs, order parts and PCBs,
contract SenseModule prototype assembly

❖Earliest versions operated only in manual, single-
shot mode

❖Lots of “basement” bowling to characterize release
waveform, refine embedded software

REVMETRIX DEVELOPMENT

 Phase 3: SenseModule Autonomous Operation

❖Fully automated functionality evolved iteratively

❖Automated release detection was developed first

❖Automated shutdown detection next

❖False activation and false release detection last

❖Refinement of those functions is on-going

❖Additional data from broad range of bowling styles

must be collected in order to develop truly robust

automated operation

REVMETRIX DEVELOPMENT

 Phase 4: Raw Data Waveform Analysis
❖ Initial visual analysis with Excel and raw data CSV

files

❖ Import raw data to MATLAB programs for display
and manipulation

❖Characterize spectrum content of waveforms using
FFTs

❖Experiment with wavelets due to discontinuous
nature of waveform

❖Develop hybrid approach for segmenting waveform
and isolating acceleration components

REVMETRIX DEVELOPMENT

 Phase 5: Bowling Metrics Extraction

❖Develop automated algorithms in MATLAB to isolate

and filter acceleration components

❖Develop additional automated algorithms in MATLAB

to analyze those component waveforms and extract

metrics meaningful to bowler

PRESENTATION SCOPE

 So – Development essentially consisted

of 5 projects

 Any of which could fill a 90 minute

presentation

 200 slides is a bit too much

 So – I’ll have to skim certain aspects to

focus on others

 And leave room for questions

REVMETRIX SENSEMODULE

SENSEMODULE

DESIGN

REVMETRIX SENSEMODULE

BASIC REQUIREMENTS

 Module must meet the following requirements
❖Unobtrusive – Bowler cannot detect physical

presence of sensor module

❖ “Transparent” – Operation cannot interfere with
bowler’s normal routine

❖Small – Fits in an existing finger/thumb hole

❖ Light Weight - Cannot appreciably affect static or
dynamic balance of ball

❖ Inexpensive – Substantially less than cost of a
bowling ball

❖ Low Power – Small battery, infrequent replacement

❖Convenient – Uploads required no more frequently
than once per game

REVMETRIX SENSEMODULE

HARDWARE

DESIGN

REVMETRIX SENSEMODULE

DESIGN CONSTRAINTS

 Designed with commercialization in

mind

 Consumer electronics design imposes

challenging constraints:

❖Low-cost means simple design

❖Hardware costs money, use the P to do the

work in software

❖Consolidate as much functionality as

possible into as few components as possible

REVMETRIX SENSEMODULE

SENSING REQUIREMENTS

 Detect start-up condition (finger placed in insert)

 Detect translational motion (3-axis)

 Detect rotational motion (3-axis)

 Detect release (finger removed from insert)

 Detect impacts with lane and pins

 Detect shutdown condition

 Track accurate passage of time

 Detect and communicate with ComModule

 Discriminate between true activation events,
communication events, spurious activations due to
pinsetter, ball return, etc

REVMETRIX SENSEMODULE

DESIGN CONSTRAINTS

 Located in finger hole, under finger insert

❖No additional hole required

❖Protects module from surface impacts

❖Module can detect presence of finger

❖User can install module and replace battery

 Size: diameter <= 0.950”, height <= 0.375”

 Weight: < 1/4 oz (≤ 7 gm)

 Battery: 1 year cycle (250-500 games)

 Cost: < $50 MSRP, < $15 MFG

REVMETRIX SENSEMODULE

INSTALLED CUT-AWAY VIEW

❖ Size: 0.950” D x 0.315” H

❖ Weight: 3-7 grams (< 1/4 oz),

depending on battery size

❖ P: SiLabs 8051F921 system-on-a-

chip

❖ Light Sensor: AMS TSL13T light-to-

voltage converter

❖ Accelerometer: Analog Devices

ADXL345 +/- 16g 3-axis, I2C interface

❖ Memory: Microchip 24FC1025 128 KB

I2C EEPROM

❖ Battery: 3V lithium coin cell (CR2016

to CR2032)

❖ Cost: $13.50 – $15.00 (1,000s)

REVMETRIX SENSEMODULE

SCHEMATIC

REVMETRIX SENSEMODULE

START-UP CIRCUIT

 Simple start-up circuit

❖Always powered, must be micro-power

❖Ambient light - transition from light to dark

❖Input to micro-power comparator (CP0) on P

❖P always powered, but in micro-power

SleepMode

❖CP0 transition wakes P from SleepMode

❖P puts self back into SleepMode at

conclusion of processing loop

REVMETRIX SENSEMODULE

MICROPROCESSOR

 Silicon Labs 8051F921 P
❖System-on-a-chip - mixed analog and digital

functions

❖ Intel 8051 compatible

❖On-board 24.5 MHz system clock, configurable
down to 3.05 MHz

❖Crossbar switch – assign on-board functions to port
pins

❖ In-system debugging capability

❖ 32 kbytes in-system writeable program memory

❖ 256 bytes of RAM, includes registers and stack
space

❖ 4096 bytes on-board XRAM – Light and ADXL
circular buffers

REVMETRIX SENSEMODULE

MICROPROCESSOR

 Silicon Labs 8051F921 P
❖Multiple timer/counters – light sample timer, I2C timer

❖ I2C byte-wide bus – accelerometer and EEPROM

❖Micro-power comparators
❖ CP0 – start-up circuit

❖ CP1 – software IR iRTZ UART

❖Micro-power SleepMode, wake from CP0 interrupt

❖ 12-bit 300 kHz ADC
❖ Ambient light sampling

❖ smaRTClock – built in micro-power RTC function
❖ Accurate sample time-stamping

❖ Tracks time and date of use

❖ Just needs 32.768 kHz watch crystal

REVMETRIX SENSEMODULE

AMBIENT LIGHT SENSOR

 AMS TSL13 Light-to-Voltage Converter

❖Carryover from original Smartdot module

❖Ambient light sensing

❖Release detection

❖IR receiver

❖Overkill for this application

❖Included for comparison purposes w/Smartdot

waveforms

❖Will be replaced with existing photodiode

REVMETRIX SENSEMODULE

ACCELEROMETER

 Analog Devices ADXL345 Accelerometer
❖ 3-axis acceleration

❖ 3-axis tilt sensing (orientation to gravity)

❖ ± 16 g range

❖ 13-bit (4 mg) resolution

❖Always powered – micro-power standby mode

❖ 200 Amp operation current

❖Autonomous operation – self-clocked

❖Selectable sample frequency – 200 Hz for
SenseModule

❖ I2C interface

❖ 32 sample FIFO

❖ 2 configurable interrupt pins (activity, inactivity, free fall)

REVMETRIX SENSEMODULE

NON-VOLATILE MEMORY

 Microchip 24FC1025 Serial EEPROM
❖EEPROM provides extended non-volatile long-term

storage for SenseModule configuration parameters
and Ball Record database

❖Always-powered, nano-power standby mode

❖ I2C interface

❖128 kbytes, configured as 1024 128-byte pages

❖Page read/write mode – up to 128 bytes at a time

❖5 ms write cycle @ 3 mA per page

❖Self-timed write, P doesn’t wait for write cycle

❖1,000,000 write cycles

REVMETRIX SENSEMODULE

PCB LAYOUT

Top Bottom

REVMETRIX SENSEMODULE

PCB ASSEMBLY

24FC1025 EEPROM

TSL13 Ambient Light Sensor

ADXL345 Accelerometer

Optek 521 Phototransistor

8051F921 P

HARDWARE

PERFORMANCE

SENSEMODULE

SENSEMODULE HARDWARE PERFORMANCE

PHYSICAL CONSTRAINTS

 Transparent – Completely unobtrusive, fully automatic
operation achieved

 Small and Light Weight:
❖ 0.315” height, 0.185 oz (5.25 gm), as built (CR2032 battery)

❖ 0.220” height, 0.088 oz (2.50 gm), w/0.031” PCB and CR2016

 Low Cost – component cost under $15 (1,000s)
❖ Does not include plastic case to hold module and battery

❖ Well under $1, excluding NRE for plastic injection molds

❖ Will use 3D printed parts for prototypes

SenseModule As Built
As Built w/CR2032

225 mAh Battery

0.080 mm PCB w/CR2032

225 mAh Battery

0.080 mm PCB w/CR2016

90 mAh Battery

Diameter 24.2 mm (0.951”) -same - -same - - same -

Height 4.8 mm (0.190”) 8.0 mm (0.315”) 7.2 mm (0.285”) 5.6 mm (0.220”)

Weight 2.00 gm (0.071 oz) 5.25 gm (0.185 oz) 4.25 gm (0.150 oz) 2.50 gm (0.088 oz)

SENSEMODULE HARDWARE PERFORMANCE

PHYSICAL CONSTRAINTS

 Low Power:

❖ 2.5 A @ 3V in SleepMode

❖ 1.1 mA @ 3V in CommandMode, ApproachMode, SampleMode

 Battery Life:

❖ CR2032 (225 mAh): 500 – 1000 games

❖ CR2016 (90 mAh): 175 – 350 games (saves height and weight)

SenseModule
Current

(ave)
SleepMode

CommandMode

(5-10 s)

ApproachMode

(10-30 s)

SampleMode

(<= 5 s)

Startup Circuit 1.3 A X

CP0 0.5 A X

smaRTClock (RTC) 0.6 A X

8051F921 (P) 600 A X X X

TSL13 50 A X X X

ADXL345 (sample) 180 A X X

ADXL345 (read) 100 A X X

EEPROM (write) 115 A X

EEPROM (read) 100 A X

TRX LED (IREF0) 250 A X

Average Current 2.5 A 1.10 mA 1.03 mA 1.15 mA

SENSEMODULE HARDWARE PERFORMANCE

START-UP CIRCUIT

 Responds to the following events:

❖ Bowler’s approach activation

❖ ComModule activation

 And (unfortunately) these additional events:

❖ Pinsetter elevating ball from pit to subway ramp

❖ Ball entering subway at pinsetter

❖ Ball exiting subway at ball return

❖ Ball rolling on ball return

❖ Ball placed in bag, locker, car trunk, closet, etc.

 Last 5 are “nuisance” activations, several of which also
involve “impacts” and/or rotation

 Much effort placed on detecting false activations and/or
release events – chew up battery life, Ball Record DB space

 Inexpensive micro-power proximity sensing circuit possible

REVMETRIX SENSEMODULE

EMBEDDED

SOFTWARE

REVMETRIX SENSEMODULE

EMBEDDED SOFTWARE

 Cost savings of minimal hardware translates
to greatly increased effort for embedded
software

 SenseModule must deal with three basic
scenarios:
❖Automatically wake-up, collect and record

sensor data, go back to sleep

❖Automatically wake-up, detect ComModule,
upload sensor data, go back to sleep

❖Detect and reject false activations due to
pinsetter, subway, ball return, placing ball in bag,
locker, trunk, closet

REVMETRIX SENSEMODULE

EMBEDDED

SOFTWARE

USE CASES

SENSEMODULE EMBEDDED SOFTWARE USE CASES

RECORD SENSOR DATA

 Bowler picks up ball and places fingers in finger holes

 SenseModule wakes up due to transition from light to
extended dark period

 SenseModule starts recording data to circular sample
buffers

 Bowler delivers ball to lane (releases ball)

 SenseModule detects release, begins committing data
to Ball Record DB (EEPROM)

 Ball hits pins and then falls into pit

 SenseModule finishes committing data to Ball Record
DB (EEPROM)

 SenseModule returns to SleepMode

SENSEMODULE EMBEDDED SOFTWARE USE CASES

UPLOAD SENSOR DATA

 Bowler picks up ball

 Places ComModule over finger hole

 SenseModule wakes up due to transition from light to
extended dark period

 SenseModule attempts to contact ComModule

 ComModule responds to SenseModule and issues
sequence of upload commands

 SenseModule uploads requested pages from
EEPROM to ComModule

 ComModule indicates completion of command
sequence

 SenseModule updates system parameters

 SenseModule returns to SleepMode.

SENSEMODULE EMBEDDED SOFTWARE USE CASES

REJECT FALSE WAKEUP CONDITIONS

 Ball rolls down lane and falls into pit

 SenseModule finishes recording data to EEPROM and
returns to SleepMode

 Pinsetter elevates ball to subway booster wheel (dark-to-
light transition, impacts, rotation)

 Ball enters subway (light-to-dark transition, rotation)

 Ball rolls in darkness along subway (rotation)

 Ball encounters ball return booster wheel (impacts)

 Ball emerges onto ball return (dark-to-light transition,
rotation)

 Multiple light-to-dark and dark-to-light transitions, combined
with ball rotation and impacts

 To extend battery life, and conserve limited Ball Record DB
entries, SenseModule must reject false wake-up conditions

SENSEMODULE

BALL RECORD

DATABASE

SENSEMODULE EMBEDDED SOFTWARE

REVMETRIX SENSEMODULE

EEPROM MEMORY MAP

EEPROM MEMORY MAP

CONFIGURATION PAGE (PAGE 0)

 Page Type: 0010 0000b (0x20h)

 Contains configuration, system, and operational parameters

 Unique module ID

 SenseModule password

 Bowling Ball name/description

 Embedded SW and DB versions

 Next available Ball Record Pointer

 Next available page in Ball Record database

 Various programmable thresholds, time out values,

detection parameters

 CRC protected to detect corruption

EEPROM MEMORY MAP

BALL POINTER PAGE (PAGE 1)

 Page Type: 0011 0000b (0x30h)

 Array of 62 Ball Record Pointers

 Ball Record Pointer array also forms circular buffer

 Ball Record Pointers do not point to fixed record locations, but

rather to Ball Pages (first page of each Ball Record)

 Ball Records themselves know their own record number (Ball

Count)

 CRC protected to detect corruption

BALL POINTER PAGE (EEPROM Page 1, Address: 0:0080, 128 bytes)

0 1 2-125 126-127

PAGE TYPE UNUSED BALL RECORD POINTER ARRAY

(0 - 61)

PAGE CRC

0x30 see below 16-bits

BYTE BYTE WORD[62] WORD

EEPROM MEMORY MAP

BALL POINTER

 Points to first page (Ball Page) of Ball Record in Ball

Record database

 Contains status of Ball Record

❖ In Use / Available – In Use, points to valid Ball Record

❖ New / Old – New since last upload

❖ Deleted – Overwritten before being uploaded

BALL RECORD POINTER (2 bytes)

15 14 13 12 11 10 - 0

BALL STATUS BITS BALL RECORD

POINTER

IN USE NEW DELETED

unused unused

EEPROM PAGE

1: In Use

0: Available

1: New

0: Old

1: Deleted

0: Not Deleted

2 - 1023

WORD

EEPROM MEMORY MAP

BALL RECORD DATABASE (PAGES 2-1023)

 Stores variable length Ball Records

 Entire Ball Record database is configured as one large

circular buffer

 Ball Records are stored in chronological order, oldest

records are aged out (overwritten) by new records

 Each Ball Record starts with a Ball Page, and is

followed by a variable number of Light and ADXL

Pages

 Status of Ball Records (new, old, deleted) stored in Ball

Pointers for each record.

EEPROM MEMORY MAP

BALL RECORD

 Ball Records are variable length – max 72 sample pages (8 seconds)

❖ Ball Page: Ball Record info, doubles as first Light Page

❖ Light Pages: 1 to 7 additional Light Pages

❖ ADXL Page: 1 to 64 ADXL Pages

❖ Light Pages are stored chronologically

❖ ADXL Pages are stored chronologically

❖ Light and ADXL Pages are not stored in overall chronological order

with respect to each other

BALL RECORD (9216 bytes max: 72 sample pages * 128 byes)

0 1-71 (max)

BALL PAGE SAMPLE PAGES

Doubles as first Light Page (106 samples, 883 ms) Mix of

1–7 Light Pages, up to 7 seconds

and

1-64 ADXL Pages, up to 8 seconds

1 EEPROM page (128 byes) Up to 71 EEPROM pages (9088 BYTES max)

EEPROM MEMORY MAP

BALL PAGE

 First page of Ball Record (doubles as first Light Page)

 Header indicates page type (11xxxxxxb) and Ball Pointer Index

 Bytes 0-21 store info pertinent to entire Ball Record

 Bytes 22-127 store first light samples

BALL PAGE (128 bytes)

0 1-4 5-6 7 8-11 12-15 16-19 20 21 22-127

BALL PAGE

HEADER

PAGE TIME

STAMP

BALL

COUNT

SAMPLE

COUNT

BALL TIME

STAMP

START TIME

STAMP

END TIME

STAMP

LIGHT

PAGES

ADXL

PAGES

LIGHT

SAMPLES

ARRAY

see below RTC time

@ start of

page

of

samples

stored in

page

RTC date

@ start of

sampling

RTC time

@ start of

sampling

RTC time

@ end of

sampling

of Light

pages in

Ball

Record

(1 - 8)

of ADXL

pages in

Ball

Record

(1 - 64)

8-bit

Samples

0 – 105

(833 ms)

BYTE DWORD WORD BYTE DWORD DWORD DWORD BYTE BYTE BYTE[106]

BALL PAGE HEADER (byte 0 of Ball Page)

7 6 5 4 3 2 1 0

PAGE TYPE BITS BALL RECORD #

1 1 0 - 61

Ball Page Type =

11xxxxxxb

Ball index from Ball Pointer Page

BYTE

EEPROM MEMORY MAP

LIGHT PAGE

 Header indicates page type (10xx xxxxb) and Ball Pointer Index

 Stores RTC time stamp of 1st sample

 Light Pages store 120 light samples (1 second)

 Last Light Page might not be full

LIGHT PAGE (128 bytes)

0 1-4 5-6 7 8-127

LIGHT PAGE HEADER PAGE TIME STAMP BALL COUNT SAMPLE COUNT LIGHT SAMPLES ARRAY

see below RTC time @ start of

page

of samples stored in

page

8-bit Samples

0 – 119

(1 second)

BYTE DWORD WORD BYTE BYTE[120]

LIGHT PAGE HEADER

7 6 5 4 3 2 1 0

PAGE TYPE BITS BALL RECORD #

1 0 0 - 61

Light Page Type = 10xxxxxxb Ball index from Ball Pointer

Page

BYTE

EEPROM MEMORY MAP

ADXL PAGE

 Header indicates page type (01xx xxxxb) and Ball Pointer Index

 ADXL Pages store 25 3-axis accelerometer samples (125 ms)

 Stores low-order word of RTC time stamp of 1st sample

ADXL PAGE (128 bytes)

0 1-2 3 - 127

ADXL PAGE HEADER PAGE TIME STAMP ADXL SAMPLES ARRAY

see below RTC time @ start of page (low-order

WORD only)

Compressed 13-bit X,Y,Z-axis samples

0 – 24

(125 ms)

see below

BYTE WORD ADXL Sample[25]

ADXL PAGE HEADER

7 6 5 4 3 2 1 0

PAGE TYPE BITS BALL RECORD #

0 1 0 – 61

ADXL Page Type – 01xxxxxxb Ball index from Ball Pointer Page

BYTE

EEPROM MEMORY MAP

ADXL SAMPLE

 ADXL Sample stores compressed 3-axis accelerometer

sample

 3 16-bit readings (13 significant bits) compressed into 5

bytes

 MSB’s of each axis are “easily” readable, LSB’s are

“mangled”

ADXL SAMPLE (5 bytes - compressed)

0 1 2 3 4

X-AXIS (LSB), Z-AXIS (LSB) X-AXIS (MSB) Y-AXIS (LSB), Z-AXIS (LSB) Y-AXIS(MSB) Z-AXIS (MSB)

7 6 5 4 3 2 1 0 bits 15-8 7 6 5 4 3 2 1 0 bits 15-8 bits 15-8

X-axis LSB

bits 7-3

unused Z-axis LSB

bits 7-6

Y-axis LSB

bits 7-3

Z-axis LSB

bits 5-3

BYTE BYTE BYTE BYTE BYTE

EMBEDDED SOFTWARE

ARCHITECTURE

SENSEMODULE EMBEDDED SOFTWARE

SENSEMODULE EMBEDDED SOFTWARE

MAINLOOP

 Super loop architecture

 MainLoop progresses through
series of processing modes
based on interrupt-driven
events

 Events trigger Event Flags
(EFs), which determine path
through MainLoop and
processes

 Several processes are loops:
❖ SleepMode

❖ CommandMode

❖ ApproachMode

❖ SampleMode

SENSEMODULE EMBEDDED SOFTWARE

RESETMODE PROCESS

 Triggered by HW or SW events

 HW Events:

❖ Loss-of-power (battery replacement)

❖ Watchdog time-out

 SW Events (BIT functions):

❖ CRC failure on EEPROM

❖ RTC failure

❖ Unresponsive external peripheral, e.g.

ADXL345

 ResetMode reinitializes internal

resources (oscillators, RTC, etc…)

SENSEMODULE EMBEDDED SOFTWARE

SLEEPMODE PROCESS

 SenseModule spends vast majority of time
in SleepMode

 Returns to SleepMode after every iteration
through MainLoop

 Performs orderly shutdown of P HW
functions, and external peripherals

 P enters internal nano-power SleepMode

 While in SleepMode, only two internal
functions remain active (both nano-power):
❖ RTC – real time function

❖ CP0 – startup comparator

 Wakeup events
❖ Ambient light start-up at CP0

❖ RTC – 24-hour alarm

❖ RTC failure

 Returns to SleepMode for RTC events

 Returns to MainLoop for CP0 event

SENSEMODULE EMBEDDED SOFTWARE

WAKEUPMODE PROCESS

 SenseModule enters
WakeUpMode upon detection of
ambient light HW start-up event
(CP0 Wakeup Event in
SleepMode)

 Handles orderly start-up of P
and its peripherals

 Starts ambient light sampling

 Checks for valid start-up
condition (must be sufficiently
dark for a certain period after
initial wake up

 Returns to MainLoop

SENSEMODULE EMBEDDED SOFTWARE

COMMANDMODE PROCESS

 MainLoop handles detecting
presence of ComModule,
receiving and parsing command
strings

 CommandMode executes
requested commands

 Four commands:

❖ Read EEPROM Page

❖ Read Ball Record

❖ Write EEPROM Page

❖ Set EEPROM Defaults

 MainLoop can receive
sequences of commands

SENSEMODULE EMBEDDED SOFTWARE

APPROACHMODE/SAMPLEMODE

 ApproachMode and SampleMode
collaborate to detect, capture, and
store ambient light (TSL13) and 3-
axis acceleration (ADXL345) sensor
readings

 ApproachMode stores sensor
readings in Light and ADXL circular
page buffers during bowler’s
approach and delivery, but does
NOT commit readings to EEPROM

 SampleMode kicks in at release and
commits previously stored circular
buffer contents to EEPROM, while
continuing to store new readings to
those circular buffers

APPROACHMODE PROCESS

SAMPLEMODE PROCESS

SENSEMODULE EMBEDDED SOFTWARE

APPROACHMODE PROCESS

WaitForSamplingEvent

(uP enters IdleMode)

Release

TimeOut?
DisableADXLSampling

DisableLightSampling
Set ApproachMode TO EF

Light

Release?
Set Light Release EF

ADXL

Watermark

EF?

ProcessADXLWatermarkEvent

· clears ADXL Watermark EF

ADXL

Release?

Reset Light Release detection

counters

ProcessSampleClockEvent
· clears Sample Clock EF

ProcessLightSamplesEvent

· clears Light Samples EF

ProcessADXLSampleEvent
· clears ADXL Sample EF

ProcessI2CControlEvent
· prioritizesI2C ownership

· modifies I2C bus mutex

· modifies multiple EFs

· modifies states

Sample

Clock

EF?

Light

Samples

EF?

ADXL

Sample

EF?

I2C bus

available?

(mutex)

Light

Release

EF?

ADXL

Release

EF?

Set Release EF

Exit ApproachMode

(return to MainLoop)

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes

No

No

No

No

No No

No

No

No

No

Set ADXL Release EF

Read

ADXL

Page?

Set ADXL Read Page EF

No

APPROACHMODE EVENTS

· Any I2C Event

· Sample Clock EF

· Light Samples EF

· ADXL Watermark EF

· ADXL Sample EF

· ADXL Samples Read EF

ProcessSamplePageEvent
· clears retryI2C state

· If ADXL Read Page EF and ADXL

Read “owns” I2C bus and page

transfer has not been initiated:

· sets I2C bus mutex

· initiates I2C transfer

· indicates I2C transfer initiated

FETCH CONFIG VALUES FROM DB

· nextBall

· nextBallPage

Configure ADXL345

Configure ADXL345 Watermark

Configure Light Sampling

Initialize LightPage circular buffer head/

tail pointers

CAPTURE RTC TIME STAMPS

· Start of sampling

· 1
st

 Light Page

· 1
st

 ADXL Page

Configure BallPage (1
st

 LightPage)

Initialize ADXLPage circular buffer head/

tail pointers

Initlaize release detection counters

Initialize states and event flags

Enter ApproachMode

OpertionMode = APPROACH

Retry

Last I2C?

Yes

SENSEMODULE EMBEDDED SOFTWARE

APPROACHMODE PROCESS

 ApproachMode retrieves next
available Ball Record pointer, and
next available Ball Page location
from Configuration Page

 Initializes Light and ADXL circular
page buffers

 Enables ambient light (TSL13) and
3-axis acceleration (ADXL345)
sensors

 Initializes release and shutdown
variables

 Initiates waveform sampling
(enables interrupts)

 P enters internal low-power
IdleMode and waits for interrupt
events

SENSEMODULE EMBEDDED SOFTWARE

APPROACHMODE PROCESS

 Interrupts pull P from IdleMode,
ISRs retrieve sensor readings, and
issue event flags EFs)

 ApproachMode captures snapshot
of EventFlags register, clears EF
register, and processes captured
EFs in specific sequence

 Event flag processing can issue
additional EFs for later processing

 Interrupts continue to occur during
ApproachMode EF processing, EFs
resulting from those interrupts will
be processed in a second round,
after current round completes

 P returns to IdleMode when there
are no new EFs

SENSEMODULE EMBEDDED SOFTWARE

APPROACHMODE PROCESS

 Light and ADXL samples are stored in
circular page buffers in P’s XRAM during
ApproachMode

 ApproachMode captures 3 seconds of
sensor data immediately preceding
release (pre-sampling)

 While sampling is going on,
ApproachMode also checks for valid
approach conditions, and for release

 If invalid approach condition is detected,
sampling shuts down, return to MainLoop
(back to SleepMode)

 If release not detected within 30 seconds,
sampling shuts down, return to MainLoop
(back to SleepMode)

 If release condition detected before time
out, ReleaseEF is set, return to MainLoop
(continues on to SampleMode)

SENSEMODULE EMBEDDED SOFTWARE

SAMPLEMODE PROCESS

WaitForSamplingEvent

(uP enters IdleMode)

Light

Shutdown?
Set Light Shutdown EF

ADXL

Watermark

EF?

ProcessADXLWatermarkEvent

· clears ADXL Watermark EF

ADXL

Shutdown?
Disable ADXL Sampling

Enter SampleMode

operationMode = SAMPLE

ProcessSampleClockEvent

· clears Sample Clock EF

ProcessLightSamplesEvent

· clears Light Samples EF

ProcessADXLSampleEvent

· clears ADXL Sample EF

ProcessI2CControlEvent
· prioritizes I2C ownership between

ADXL Page Read, Light Page

Write, ADXL Page Write EFs

· modifes I2C bus mutex

· modifies multiple EFs

· modfies states

Sample

Clock

EF?

Light

Samples

EF?

ADXL

Sample

EF?

Set SampleMode TO EF

Exit SampleMode

(proceed to CleanUpMode)

ADXL

or Light SD

EFs?

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Set ADXL Shutdown EF

Read

ADXL

Page?

Set ADXL Read Page EF

No

SAMPLEMODE EVENTS

· Any I2C Event

· Sample Clock EF

· Light Samples EF

· ADXL Watermark EF

· ADXL Sample EF

· ADXL Samples Read EF

· Page Written EF

Set New Ball EF

ADXL

and Light TO

EFs?

Yes

No

Disable ADXL Sampling

Disable Light Sampling

I2C bus

available?

(mutex)

Retry

last I2C?

Yes

Yes

No

No

ProcessSamplePageEvent
· clears retryI2C state

· if ADXL Read Page, Light Write

Page, or ADXL Write Page EF, and

the EF “owns” the I2C bus and

page transfer has not been

initiated:

· sets I2C bus mutex

· initiates I2C transfer

· indicates I2C transfer initiated

Initialize sample page counters

Initialize time out detection

Initialize shutdown detection

Yes

SENSEMODULE EMBEDDED SOFTWARE

SAMPLEMODE PROCESS

 Similar operation to ApproachMode –
Waits in IdleMode, captures EFs,
processes EFs, stores samples in circular
page buffers

 SampleMode commits page buffer
contents to new Ball Record in EEPROM

 New pages stored at buffer “head” pointer,
pages written to EEPROM from buffer “tail”
pointer

 Producer/consumer problem:
❖ Buffers are full upon entering SampleMode

❖ To avoid buffer overrun, must “consume” pages
(write to EEPROM) faster than new pages are
“produced” (stored in page buffers)

 Starvation problem:
❖ 8 ADXL pages produced for each Light page

❖ Separate Light and ADXL buffers

❖ Write pages to EEPROM from both buffers

❖ ADXL has higher priority, but must allow some
alternation between buffers

SENSEMODULE EMBEDDED SOFTWARE

SAMPLEMODE PROCESS

 Additional EFs and increased complexity due to
writing pages to EEPROM

 I2C bus is shared resource:
❖ ADXL reads from ADXL345

❖ Light Page writes to EEPROM

❖ ADXL Page writes to EEPROM

 I2C bus contention is an issue, can lead to
deadlock if not managed correctly

 25 ADXL samples retrieved every 125 ms from
ADXL345, takes 7 ms via I2C bus

 Transfers to EEPROM also take 7 ms

 Must use mutex on I2C resource

 EEPROM writes take additional 5 ms, EEPROM
is unresponsive during writes, must periodically
poll and retry

 ProcessI2CControlEvent routine handles all bus
contention – all bus traffic flows through this
routine

 Assigns “ownership” based on priority, handles
retries, tracks progress of transfer

SENSEMODULE EMBEDDED SOFTWARE

SAMPLEMODE PROCESS

 ADXL345 captures samples in
internal FIFO buffer – holds up to 32
3-axis samples

 New ADXL sample added to FIFO
every 5 ms (200 Hz sample rate)

 FIFO interrupts P at 25 samples

 7 ms to transfer 25 entries (1 ADXL
Page) from FIFO

 Another producer/consumer
problem – how to keep from losing a
sample during I2C transfer?
❖ ADXL345 continues to post new

samples to tail of FIFO while I2C
transfer pulls from head of FIFO

❖ 7 unused FIFO entries create 35 ms
window for retrieving 25 ADXL samples
before FIFO overrun occurs

SENSEMODULE EMBEDDED SOFTWARE

SAMPLEMODE PROCESS

 Valid release detection:
❖ Does waveform match that of

rolling ball?

❖ If not, sampling shuts down

 Shutdown detection:
❖ Has ball stopped rolling (fallen in

pit at end of lane?)

❖ If so, sampling shuts down

 Sampling time out:
❖ Shuts down sampling if shutdown

condition not detected within 8
seconds from start of
ApproachMode

 Return to MainLoop
(CleanUpMode)

SENSEMODULE EMBEDDED SOFTWARE

CLEANUPMODE PROCESS

 CleanUpMode handles remaining processing
coming out of CommandMode, ApproachMode,
SampleMode

 CommandMode Clean Up:
❖ Disable serial communications

❖ Update firstNewBall, newBallCount,
deletedBallCount in Config Page

 ApproachMode Clean Up:
❖ Updates false activation count, run time in Config

Page

 SampleMode Clean Up:
❖ Valid new Ball Record:

❖ Updates sampleCount, ballDate, ballTimeStamp,
endTimeStamp, lightPages, adxlPages in new Ball
Page

❖ Updates Ball Record Pointer in Ball Pointer Page

❖ Updates ballCount, newestBall, nextBallPage,
firstNewBall, newBallCount, deletedBallCount,
nextBall in Config Page

❖ False release:
❖ Updates falseReleaseCount, runTime,

deletedBallCount in Config Page

❖ New EEPROM data overwritten next time

 Returns to MainLoop (SleepMode)

Enter CleanUpMode
operationMode = CLEANUP

Coming from

SampleMode?

New ball

captured?

Retrieve newBallPage from DB

Update newBallPage

· header

· sampleCount

· ballDate

· ballTimeStamp

· endTimeStamp

· lightPages

· adxlPages

Commit new BallPage to DB

Retrieve BallPointerPage from DB

Update BallPointerPage

· all BallPointers for BallRecords

overwritten/deleted by new BallRecord

· pointer for new BallRecord

Commit updated BallPointerPage to DB

Retrieve ConfigPage from DB

Update ConfigPage

· ballCount

· newestBall

· nextBallPage

· firstNewBall

· newBallCount

· deletedBallCount

· nextBall

Commit ConfigPage to DB

Coming from

CommandMode?

Disable serial reception

Disable serial transmission

Retrieve BallPointerPage from DB

Get counts for new and deleted BallRecords

Exit CleanUpMode

(proceed to SleepMode)

Retrieve ConfigPage from DB

Update ConfigPage

· firstNewBall

· newBallCount

· deletedBallCount

· trxRetryCount

· trxRetryPage

Commit ConfigPage to DB

NoYes

Yes
Yes

No No

SENSEMODULE EMBEDDED SOFTWARE

AMBIENT LIGHT SAMPLING DATA FLOW

 P’s ADC0 samples TSL13 output @ 240 Hz,
averages 2 samples to cancel 120 Hz
fluorescent light ripple

 P timer generates 240 Hz sample clock
❖ Phase 1: 100 S to enable TSL3

❖ Phase 2: Starts ADC0 conversion, sets
SampleClockEF

 ADC0 conversion complete ISR
❖ Phase 1: Grabs 1st 240 Hz sample

❖ Phase 2: Averages 1st and 2nd samples, places
result in 12-sample (100 ms) ISR buffer

❖ Phase 3: ISR buffer full, transfers contents for EF
processing, resets ISR buffer, issues
LightSampleEF

 ProcessLightSamplesEvent
❖ ApproachMode: Detects Light release

❖ SampleMode: Detects Light shutdown

❖ Transfers light sample buffer to current page in
Light circular buffer

❖ When page fills, advances buffer to next page,
issues LightPageEF

 ProcessI2CControlEvent
❖ Processes LightPageEF

0

1

2

LIGHT PAGE BUFFER

XDATA: 3 Light Pages

write index = lightPageHead

read index = lightPageTail

lightPageHead lig
htP

ageTail

LIGHT PAGE @ LIGHTPAGEHEAD

(IN LIGHT PAGE BUFFER)
128 bytes: 120 ADXL samples

index = lightIndex

LIGHT SAMPLE BUFFER

IDATA: 12 8-bit Light Samples

ADC0 SAMPLE BUFFER

IDATA: 12 8-bit TSL13 samples

LIGHT SAMPLE TIMER INTERRUPT (2 PHASES)
(240 Hz Sample Clock)

PHASE 1 - Every 4.667 ms (240 Hz):

· Enables TSL13 (100 us before start of conversion)

· Sets Sample Timer for 100 us interrupt (phase 2)

PHASE 2 – 100 us after phase 1

· Starts ADC0 sample conversion after TSL13 output

has stabilized

· Sets Sample Timer for 240 Hz interrupt (phase 1)

PROCESSLIGHTSAMPLESEVENT

On LightSamplesEF (every 100 ms - 12 light samples):

· Transfers Light Samples to Light Page Buffer Head

· Tracks Light Release Conditions (ApproachMode)

· Tracks Release TO Conditions (ApproachMode)

· Tracks Light Sample Shutdown Conditions (SampleMode)

When current Light Page is full (120 samples, every 1 sec):

· Sets LightPageEF (for ProcessI2CControlEvent)

ADC0 INTERRUPT (PHASE 1)

(ADC0 Conversion Complete)

Every 4.667 ms (240 Hz):

· Captures ADC0 conversion result from TSL13

· Adds conversion to ADC0 Sample Value

ADC0 INTERRUPT (PHASE 3)

(ADC0 Buffer Transfer)

Every 100 ms (12 samples):

· Transfers ADC0 Sample Buffer to Light Sample Buffer

for processing

· Sets LightSamplesEF

ADC0 SAMPLE VALUE

DATA: 8-bit TSL13 sample

ADC0 INTERRUPT (PHASE 2)

(Light Sample FIltering)

Every 8.333 ms (120 Hz),:

· Stores 120 Hz result in ADC0 Sample Buffer

· Resets ADC0 Sample Value to 0

· Sets SampleClockEF (for event processing)

Ambient Light Sampling Data Flow

To

SamplePageTransferDataFlow

SENSEMODULE EMBEDDED SOFTWARE

ACCELERATION SAMPLING DATA FLOW

 ADXL345 samples 3-axis acceleration
autonomously @ 200 Hz

 Issues Watermark interrupt to uP @
25 samples in FIFO

 Watermark ISR:
❖ Saves last RTC time for current FIFO

contents (ADXL Page)

❖ Captures new RTC time (for next ADXL
page)

❖ Issues ADXLWatermarkEF

 ProcessWatermarkEvent
❖ Sets ADXLReadPageEF

❖ SampleMode: Tracks ADXL shutdown
detection

 ProcessI2CControlEvent:
❖ Starts I2C transfer when I2C bus becomes

available

28 0
127

1415 1316

ADXL PAGE BUFFER

XDATA: 29 ADXL Pages

write index = adxlPageHead

read index = adxlPageTail

a
d
x
lP

a
g
e
H

e
a
d

adxlPageTail

ADXL PAGE @ ADXLPAGEHEAD

(IN ADXL PAGE BUFFER)
128 bytes: 25 5-byte ADXL samples

125 msecs

index = adxlIndex

ADXL WATERMARK INTERRUPT

(200 Hz ADXL Internal Clock)

ADXL accumulates 25 6-byte, 3-axis samples in

internal FIFO. Every 25 ADXL samples (125 ms),

ADXL issues Watermark interrupt to uP.

· Sets ADXLWatermarkEF

ADXL SAMPLE

IDATA: 6-byte uncompressed

ADXL sample

SMBUS0 INTERRUPT (PHASE 1)
Every byte:

· Moves I2C byte to 6-byte ADXL Sample Buffer

PROCESSWATERMARKEVENT

On ADXLWaterMarkEF (every 125 ms):

· Sets ADXLReadPageEF

· Tracks total time in SampleMode by counting

events

PROCESSADXLSAMPLEEVENT

On ADXLSampleEF

· Compresses 6-byte sample into 5 bytes in ADXL Sample

· Writes ADXL Sample to ADXL Page Buffer Head (SampleMode)

· Track ADXL Release Conditions (ApproachMode)

· Track ADXL Shutdown Conditions (SampleMode)

· Initiates next sample transfer (if still reading ADXL FIFO)

When current ADXL Page is full (25 ADXL samples, every 125 ms):

· Sets ADXLPageEF (for ProcessI2CControlEvent)

ADXL SAMPLE

IDATA: 5-byte compressed

ADXL sample

SMBUS0 INTERRUPT (PHASE 2)
Every 6 bytes

· Transfers ADXL Buffer to ADXL Sample

· Sets ADXLSampleEF

ADXL BUFFER

IDATA: 6-byte ADXL sample

Acceleration Sampling Data Flow

To

SamplePageTransferDataFlow

PROCESSI2CCONTROLEVENT

On ADXLReadPage EF:

· Assigns ownership of the I2C bus to

ADXLReadPage event as soon as the I2C bus

becomes available

PROCESSSAMPLEPAGE EVENT

On ADXLReadPage EF, I2C ownership, and

availability:

· Sets up a new ADXL Page in the ADXL Page

circular buffer.

· Initiates I2C transfer (SMBUS0 interrupt)

SENSEMODULE EMBEDDED SOFTWARE

ACCELERATION SAMPLING DATA FLOW

 SMBus0 ISR (I2C transfer)
❖ Phase 1: Reads sample bytes into ISR

buffer – each ADXL sample has 6 bytes

❖ Phase 2: Transfers 6-byte sample to
ADXLSampleBuffer, sets ADXLSampleEF

 ProcessADXLSampleEvent
❖ Compresses 6-byte sample into 5-byte

sample

❖ Places compressed sample in “head”
page of ADXL circular buffer

❖ ApproachMode: Detects ADXL release

❖ SampleMode: Detects ADXL shutdown

❖ When “head” buffer page fills,
advances buffer pointer

❖ Issues ADXLPageEF

 ProcessI2CControlEvent:
❖ Handles ADXLPageEF

28 0
127

1415 1316

ADXL PAGE BUFFER

XDATA: 29 ADXL Pages

write index = adxlPageHead

read index = adxlPageTail

a
d
x
lP

a
g
e
H

e
a
d

adxlPageTail

ADXL PAGE @ ADXLPAGEHEAD

(IN ADXL PAGE BUFFER)
128 bytes: 25 5-byte ADXL samples

125 msecs

index = adxlIndex

ADXL WATERMARK INTERRUPT

(200 Hz ADXL Internal Clock)

ADXL accumulates 25 6-byte, 3-axis samples in

internal FIFO. Every 25 ADXL samples (125 ms),

ADXL issues Watermark interrupt to uP.

· Sets ADXLWatermarkEF

ADXL SAMPLE

IDATA: 6-byte uncompressed

ADXL sample

SMBUS0 INTERRUPT (PHASE 1)
Every byte:

· Moves I2C byte to 6-byte ADXL Sample Buffer

PROCESSWATERMARKEVENT

On ADXLWaterMarkEF (every 125 ms):

· Sets ADXLReadPageEF

· Tracks total time in SampleMode by counting

events

PROCESSADXLSAMPLEEVENT

On ADXLSampleEF

· Compresses 6-byte sample into 5 bytes in ADXL Sample

· Writes ADXL Sample to ADXL Page Buffer Head (SampleMode)

· Track ADXL Release Conditions (ApproachMode)

· Track ADXL Shutdown Conditions (SampleMode)

· Initiates next sample transfer (if still reading ADXL FIFO)

When current ADXL Page is full (25 ADXL samples, every 125 ms):

· Sets ADXLPageEF (for ProcessI2CControlEvent)

ADXL SAMPLE

IDATA: 5-byte compressed

ADXL sample

SMBUS0 INTERRUPT (PHASE 2)
Every 6 bytes

· Transfers ADXL Buffer to ADXL Sample

· Sets ADXLSampleEF

ADXL BUFFER

IDATA: 6-byte ADXL sample

Acceleration Sampling Data Flow

To

SamplePageTransferDataFlow

PROCESSI2CCONTROLEVENT

On ADXLReadPage EF:

· Assigns ownership of the I2C bus to

ADXLReadPage event as soon as the I2C bus

becomes available

PROCESSSAMPLEPAGE EVENT

On ADXLReadPage EF, I2C ownership, and

availability:

· Sets up a new ADXL Page in the ADXL Page

circular buffer.

· Initiates I2C transfer (SMBUS0 interrupt)

SENSEMODULE EMBEDDED SOFTWARE

SAMPLE PAGE TRANSFER AND STORAGE

 ApproachMode has no bus
contention, only I2C reads from
ADXL345

 SampleMode has ADXL reads,
ADXL Page writes, Light Page
writes

 Light and ADXL circular page
buffers are always full coming from
ApproachMode

 The start of SampleMode is “busy”
❖ Reading ADXL pages from ADXL345

❖ Storing new Light and ADXL pages at
“heads” of circular buffers

❖ Transferring old pages from “tails” of
circular buffers to EEPROM

PROCESSI2CCONTROLEVENT

On ADXLReadPageEF, LightPageEF, or ADXLPageEF:

· Prioritizes and assigns I2C ownership

· Selects sample page to transfer

· Sets SamplePageEF (if initiating new transfer)

· Manages Light and ADXL Page Buffer head and

tail pointers

· Tracks SampleMode time out conditions

· Tracks SampleMode shutdown conditions

PROCESSSAMPLEPAGEEVENT

On SamplePageEF - Initiates assigned sample page transfer based

on I2C ownership:

· reads ADXL FIFO (see ADXLSamplePageDataFlow)

· writes Light Page from Light Page buffer @ lightPageTail

· writes ADXL Page from ADXL Page Buffer @ adxlPageTail

1023
0

CFG
Page

1
Ptr

Page
1022

BALL RECORD DATABASE

128Kb I2C EEPROM

 Page 0: Config Page

 Page 1: Ball Pointer Page

 Page 2–1023: Ball Records (variable)

 Min: 14 @ 8 seconds (72 pages each)

 Max: 37 @ 3 seconds (27 pages each)

2

511
510

512
513

b
a
llF

irs
tP

a
g
e

b
a
llF

ir
s
tP

a
g
e
 +

b
a
llS

a
m

p
le

P
a
g
e
s

0

1

2

LIGHT PAGE BUFFER

XDATA: 3 Light Pages

write index = lightPageHead

read index = lightPageTail

lightPageHead lig
htP

ageTail

28 0
127

1415 1316

ADXL PAGE BUFFER

XDATA: 29 ADXL Pages

write index = adxlPageHead

read index = adxlPageTail

a
d
x
lP

a
g
e
H

e
a
d

adxlPageTail

From

LightSamplePageDataFlow
From

ADXLSamplePageDataFlow

Sample Page Transfer Data Flow Diagram

SENSEMODULE EMBEDDED SOFTWARE

SAMPLE PAGE TRANSFER AND STORAGE

 ProcessI2CControlEvent called on every
pass through SampleMode
❖ Prioritizes competing I2C bus requests

❖ Assigns and manages “ownership” of I2C bus

❖ ADXLReadPageEF

❖ ADXLWritePageEF

❖ LightWritePageEF

❖ Sets SamplePageEF if initiating new I2C transfer

❖ SampleMode:

❖ Detects sampling shutdown

❖ Detects sampling time out

 ProcessSamplePageEvent
❖ Initiates sample page transfer based on I2C

ownership assigned by ProcessI2CControlEvent

❖ Transfers ADXL FIFO to ADXL circular buffer
“head”

❖ Writes Light Page from Light circular buffer “tail”

❖ Writes ADXL Page from ADXL circular buffer
“tail”

❖ Issues “retries” if EEPROM was busy last time
(EEPROM non-responsive during 5 ms write)

PROCESSI2CCONTROLEVENT

On ADXLReadPageEF, LightPageEF, or ADXLPageEF:

· Prioritizes and assigns I2C ownership

· Selects sample page to transfer

· Sets SamplePageEF (if initiating new transfer)

· Manages Light and ADXL Page Buffer head and

tail pointers

· Tracks SampleMode time out conditions

· Tracks SampleMode shutdown conditions

PROCESSSAMPLEPAGEEVENT

On SamplePageEF - Initiates assigned sample page transfer based

on I2C ownership:

· reads ADXL FIFO (see ADXLSamplePageDataFlow)

· writes Light Page from Light Page buffer @ lightPageTail

· writes ADXL Page from ADXL Page Buffer @ adxlPageTail

1023
0

CFG
Page

1
Ptr

Page
1022

BALL RECORD DATABASE

128Kb I2C EEPROM

 Page 0: Config Page

 Page 1: Ball Pointer Page

 Page 2–1023: Ball Records (variable)

 Min: 14 @ 8 seconds (72 pages each)

 Max: 37 @ 3 seconds (27 pages each)

2

511
510

512
513

b
a
llF

irs
tP

a
g
e

b
a
llF

ir
s
tP

a
g
e
 +

b
a
llS

a
m

p
le

P
a
g
e
s

0

1

2

LIGHT PAGE BUFFER

XDATA: 3 Light Pages

write index = lightPageHead

read index = lightPageTail

lightPageHead lig
htP

ageTail

28 0
127

1415 1316

ADXL PAGE BUFFER

XDATA: 29 ADXL Pages

write index = adxlPageHead

read index = adxlPageTail

a
d
x
lP

a
g
e
H

e
a
d

adxlPageTail

From

LightSamplePageDataFlow
From

ADXLSamplePageDataFlow

Sample Page Transfer Data Flow Diagram

RAW DATA

WAVEFORMS

SENSEMODULE PERFORMANCE

 After about 3 years of part-time research, design, and

development, the first functional SenseModule prototype

emerged from my basement and made its way down a real

bowling lane…

 I threw 20 first balls with it – about what I thought the

database would hold, at the time

 The potential IP implications were still unknown, so I couldn’t

upload and view the data at that lanes – I had to wait until I

got back home to look at the data…

 So, after 8 years of anticipation, and 3 years of development,

what did I see when I uploaded the data to my PC…?

SENSEMODULE PERFORMANCE

RAW DATA WAVEFORMS

NOTHING…

Turns out my first attempt at automatic

release detection was a little too restrictive

for real-world use…

SENSEMODULE PERFORMANCE

RAW DATA WAVEFORMS

SENSEMODULE PERFORMANCE

RAW DATA WAVEFORMS
 After some further tweaking, and another trip to the lanes, here’s what I saw…

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

 Typical raw data waveform - time starts at beginning of ApproachMode

 First 8.25 seconds of data were overwritten in circular page buffers during

ApproachMode while waiting for release

SENSEMODULE PERFORMANCE

TYPICAL RAW DATA WAVEFORM
 Waveform evolves through several regions from ApproachMode to SampleMode

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8 9 10 11 12 13 14 15

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

ApproachMode

Approach RegionStance Region

SampleMode
Release Region Loft Region

Reaction Region

Impact Region Shutdown Region

Loft Impacts Pin Impacts

❖ Stance: Bowler is relatively still, preparing to start approach

❖ Approach: Bowler starts approach, response to arm swing is evident

❖ Release: Bowler applies lift and turn to ball, notice sudden sharp increase in
acceleration, notice increase in light level, as bowler removed fingers from ball

❖ ApproachMode ends, SampleMode begins

SENSEMODULE PERFORMANCE

TYPICAL RAW DATA WAVEFORM
 Waveform evolves through several regions from ApproachMode to SampleMode

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8 9 10 11 12 13 14 15

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

ApproachMode

Approach RegionStance Region

SampleMode
Release Region Loft Region

Reaction Region

Impact Region Shutdown Region

Loft Impacts Pin Impacts

❖ Loft: Bowler has released ball, ball is in free fall, flat acceleration due to centripetal force
generated by rotation

❖ Loft Impacts: Ball contacts lane, generating impact, second impact is from bounce

❖ Reaction: Ball rolling on lane, tilt sensing aspect superimposed on acceleration,
acceleration increases as ball “revs” up, light waveform also indicates rotation

SENSEMODULE PERFORMANCE

TYPICAL RAW DATA WAVEFORM
 Waveform evolves through several regions from ApproachMode to SampleMode

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8 9 10 11 12 13 14 15

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

ApproachMode

Approach RegionStance Region

SampleMode
Release Region Loft Region

Reaction Region

Impact Region Shutdown Region

Loft Impacts Pin Impacts

❖ Impact: Ball impacts pins – multiple spikes, plus increased high frequency noise level,

ambient light spikes as ball passes under pin light

❖ Shutdown: Ball falls off end of lane into pit, free fall again evident, SenseModule shuts

down

SENSEMODULE PERFORMANCE

FALSE ACTIVATION WAVEFORM
 SenseModule also “sees” waveforms that result from false activations

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9

G
's

seconds

Ball Record: 00011
6-9-10

 Subway and Ball Return Waveform

X-axis

Y-axis

Z-axis

Light

D: Ball return booster wheelB: Subway booster wheel

A: Ball emerges
from pinsetter

E: Ball elevated to
ball return

C: Ball in subway

❖ SenseModule started up in pinsetter (dark)

❖ Light release condition detected when ball emerged onto subway ramp, combined with
“impacts” from encountering booster wheel

❖ Rotation occurs as ball rolls along subway toward ball return

❖ “Impacts” at ball return booster wheel, sampling timed out as ball rolled on ball return

SENSEMODULE PERFORMANCE

FALSE ACTIVATION WAVEFORM
 SenseModule also “sees” waveforms that result from false activations

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

3 4 5 6 7

G
's

seconds

Ball Record: 00004
Result: False Activation (ball return)

Time: 17:45:28 8-29-2010
Ts: 7.079 s, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis
 Y-axis
 Z-axis
 Light

A: Ball in subway,
samples overwritten

D: Ball elevated to
ball return

C: Ball return booster wheel E: Ball emerges from ball return

F: Ball rolling on ball return

B: Ball in subway

❖ SenseModule started up when entering subway at pinsetter

❖ Light release condition detected when ball emerged from subway to ball return

AUTONOMOUS

OPERATION

SENSEMODULE PERFORMANCE

SENSEMODULE PERFORMANCE

AUTONOMOUS OPERATION

 SenseModule should record data for every valid activation and

release

 SenseModule start-up circuit cannot reject subway and ball

return activations

 Autonomous operation requires reliable detection and

discrimination routines

 To conserve Ball Record DB space and battery life:

❖ SenseModule should detect invalid ApproachMode waveforms, and

shutdown

❖ SenseModule should then detect invalid release conditions, and shutdown

❖ SenseModule should then detect invalid loft/reaction conditions, and

shutdown

 Discrimination is not easy, since subway and ball return

activation waveforms have similar morphology as typical

waveform

SENSEMODULE PERFORMANCE

AUTONOMOUS OPERATION

 Complexity of task increases with processor and
memory constraints:
❖ 8-bit P running at 3.05 MHz

❖ 256 bytes of RAM, including stack (24 bytes)

❖ 4 kbytes of XRAM used for circular page buffers

❖ 32 kbytes of code space

❖ Must detect in real-time

 True challenge of working in 8-bit embedded
environment – working within those constraints

 Must identify minimum amount of information (data)
necessary to make reliable decisions quickly

 Requires very efficient algorithms for detection – no
heavy-duty DSP going on in the SenseModule

SENSEMODULE PERFORMANCE

ACTIVATION AND RELEASE DETECTION STATE MACHINE

SENSEMODULE PERFORMANCE

FALSE ACTIVATION DETECTION
 Typical ApproachMode waveform, leading up to release

❖ Absence of light

❖ Initial flat acceleration – tilt sensing only

❖ Followed by low frequency content

❖ Low acceleration amplitude – under ±2 g

-10

-8

-6

-4

-2

0

2

4

6

8 9 10 11 12

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

E: Release Window

A: ApproachMode

C: Approach and Delivery

D: Lift Motion

B: Stance

SENSEMODULE PERFORMANCE

FALSE ACTIVATION DETECTION

 ApproachMode times out in 30 seconds if release not detected

 Must quickly detect invalid waveform to limit battery

consumption

 Limited breadth of waveforms with which to develop false

activation routine – single user during development

 Subway and ball return scenarios present false activation

detection challenges

 Not as simple as low light, low amplitude and low frequency

acceleration levels

SENSEMODULE PERFORMANCE

FALSE ACTIVATION DETECTION

 False activation detection algorithm considers:

❖ Ambient light level: Magnitude, frequency, rate of change

❖ 3-axis acceleration: magnitude, frequency, rate of change

❖ Relative phase of changes in light and acceleration

 SenseModule must err on side of caution – detect every valid

activation, at the expense of missing some false activations

 Results of false activation routine have been mixed

❖ Rejected 2.3% of valid activations

❖ Missed 1/3 of false activations

SenseModule

(219 frames)
Valid Activations False Activations

Captured 214 56

Rejected 5 123

Total Events 219 178

Detection Efficiency (%) 97.7% 68.5%

SENSEMODULE PERFORMANCE

VALID RELEASE DETECTION

 Typical release and loft region waveform

❖ Rapidly increasing acceleration levels, especially on Y-axis Z-axis

❖ Amplitudes exceeding ± 2 g on multiple axes

❖ Absence of light followed by sudden increase in light

❖ Sudden drop-off to flat acceleration – SenseModule in free fall during loft

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

11.4 11.6 11.8 12 12.2 12.4

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light
F: Lift Motion

D: Loft

B: SampleMode

E: Rotation

I: Free Fall

J: Loft Impacts

A: ApproachMode

C: Approach and Delivery

G: Release Window

H: Release Point

SENSEMODULE PERFORMANCE

VALID RELEASE DETECTION
 False activation detection and release detection run

concurrently

 If false activation detected first – shuts down sampling, returns
to SleepMode

 Otherwise, release detection switches SenseModule from
ApproachMode to SampleMode

 SampleMode starts committing Light and ADXL Pages to
EEPROM

 Missed false activation/release overwrites valid Ball Record(s)

 Subway and Ball Return scenarios also include false release
content

 Release detection NOT as simple as:
❖ Rapidly increasing acceleration

❖ Followed by light transition

❖ Followed by flat acceleration

SENSEMODULE PERFORMANCE

VALID RELEASE DETECTION
 Release detection algorithm considers:

❖ Ambient light level: Rate of change

❖ 3-axis acceleration: magnitude, rate of change

❖ Timing constraints between certain light and acceleration events

 Similar story - SenseModule must detect every valid release, at the
expense of missing some false releases

 Results of release detection have been mixed
❖ Rejected 2.3% of valid releases

❖ Missed 1/4 of false releases

 Combined efficiency of false activation detection and release
detection is 93%

 Still room for improvement – must capture 100% valid waveforms

SenseModule

(219 frames)
Valid Releases

Pinsetter “False”

Releases

Subway/Ball Return

“False” Releases

Captured 214 2 13

Rejected 5 41

Total Events 219 56

Detection Efficiency (%) 97.7% 73.2%

SENSEMODULE PERFORMANCE

SHUTDOWN DETECTION

 Typical Shutdown region waveform:

❖ Light spike from passing under pin deck light

❖ Multiple impacts with pins and increased high frequency noise content

❖ Free fall as ball falls into pit (flat acceleration)

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

14.2 14.4 14.6 14.8 15

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

A: SampleMode
C: Rotation Region

B: SleepMode

F: Pin Deck Light

Free FallG: Pin Impacts

E: Shutdown
Region

D: Impact Region

I:H:

SENSEMODULE PERFORMANCE

SHUTDOWN DETECTION

 Variable length Ball Records conserve Ball Record DB space,

SenseModule run time

 Detects cessation of activity, shuts down sampling before time

out

 Could double as last line of “defense” against recording false

activations:

❖ Constantly monitor Reaction region sensor response

❖ Shut down sampling, does not advance pointers, if invalid conditions

detected

❖ Only a portion of oldest Ball Record gets overwritten

❖ Next Valid Ball Record overwrites invalid data

SENSEMODULE PERFORMANCE

SHUTDOWN DETECTION STATE MACHINE

SENSEMODULE PERFORMANCE

SHUTDOWN DETECTION

 Simple shutdown algorithm:

❖ Low light threshold
OR

❖ 50 ms free fall

 Invalid reaction detection algorithm:

❖ Acceleration frequency content

❖ Relative 3-axis acceleration amplitudes

❖ Light level

❖ Minimum time between release and pin impacts

 Results:

❖ 100% effective shutting down valid waveform sampling before expiration of

sampling time out

❖ Invalid reaction detection not yet implemented

WAVEFORM

ANALYSIS

REVMETRIX APPLICATION

WAVEFORM ANALYSIS

 Now that the SenseModule has collected this

data, what can we do with it?

 Must extract and present useful metrics in a

form easy to visualize and comprehend

 So what metrics interest the bowler?

WAVEFORM ANALYSIS

 Everything the bowler can control happens at

release – consistent release is at the heart of

consistent execution

❖Release linear velocity (ball speed)

❖Release angular velocity (RPMs)

❖Axis turn (angle with respect to direction of travel)

❖Axis tilt (angle with respect to lane surface)

❖Loft distance

WAVEFORM ANALYSIS

 Bowler cannot control what happens after

release – how ball reacts to lane conditions:

❖Breakpoint (lane location where ball starts to hook

toward pins)

❖Revolutions from release to impact (“revs”)

❖ Impact linear velocity

❖ Impact angular velocity

❖ Impact axis turn

❖ Impact axis tilt

WAVEFORM ANALYSIS

 So what can the SenseModule tell us?

 Apart from the automatic detection routines, SenseModule
makes no decisions and draws no conclusions from raw data it
collects

 SenseModule identifies characteristics directly from raw data in
real-time indicative of approach, release, ball rolling down lane,
impact with pins, falling into pit

 SenseModule knows nothing about release velocity, angular
velocity, RPMs, loft distance, etc

 Raw data must be uploaded to RevMetrixApp, which then must
extract those quantities of interest from SenseModule raw data
waveforms, and present them to bowler

How do we do that?

WAVEFORM ANALYSIS

 How do we get from this (raw data):

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

G
's

seconds

Ball Record: 00009
Result: 10-pin (light pocket)
Time: 17:49:53 8-29-2010

Ts: 15.015 sec, ADXL Fs: 204.792 Hz, Light Fs: 120.481 Hz

 X-axis

 Y-axis

 Z-axis

 Light

WAVEFORM ANALYSIS

 To this (metrics)…?

 Release linear velocity: 15.00 mph

 Impact linear velocity: 14.57 mph

 Average linear velocity: 14.93 mph

 Release angular velocity: 357.9 rpms

 Impact angular velocity: 423.7 rpms

 Total Revolutions: 15.3

 Loft Distance: 54 in (4.51 ft)

 Reaction Distance: 76 in (6.34 ft)

 Breakpoint Distance: 37.7 ft

WAVEFORM ANALYSIS

❖ A modicum of math…

❖ A pinch of Physics…

❖ A dash of DSP…

❖ A smattering of Wavelet Theory…

❖ And a fair amount of algorithm

development to tie all of that together…

❖ Rather a lot, really… ☺

WAVEFORM ANALYSIS

And It was time consuming…

And complicated…

And frustrating…

And “fascinating”…

If you’re into that kind of thing…

Did I mention that I’m a gEEk…☺

WAVEFORM ANALYSIS

In more formal terms, it ultimately involved all of the following:

 Fast Fourier Transforms (FFTs)

 Symmetric Finite Impulse Response (FIR) filters

 Wavelet decomposition and reconstruction
❖ 1st-level Haar

❖ 3rd and 5th-level biorthogonal 6.8

 Statistical analysis:
❖ Mean

❖ Variance

❖ Standard deviation

 Numerical methods
❖ Interpolation

❖ Extrapolation

❖ Curve fitting

❖ Derivatives

WAVEFORM ANALYSIS

 SenseModule waveform data is uploaded

through ComModule to PC

 Stored as CSV files on PC

 MS Excel used for initial data visualization,

developing SenseModule algorithms

 MATLAB used to isolate and filter

acceleration components and develop

bowling metric extraction routines

WAVEFORM ANALYSIS

 Waveforms contain multiple regions with sudden transitions and

varying frequency content

 FFTs and FIR techniques are suited to repetitive signal content

 Wavelet techniques work better on disjoint, non-repetitive

signals

 1st-level Haar wavelet details are used to identify distinct

temporal regions of 3-axis acceleration waveforms

 Waveform is then segmented into components with common

spectral composition

 FIR and wavelet-based filtering techniques tuned to segment

morphology and frequency content extract meaningful metrics

WAVEFORM ANALYSIS

 Focus on Loft and Reaction regions (from release to pin impact)

 FIR filters combined with biorthogonal wavelet decomposition

and reconstruction extract 3rd-level approximation

 Additional filtering isolates tilt-response sinusoidal “chirp” signal

indicative of ball “revving up” as it rolls down lane

 Biorthogonal 5th-level approximation recovers centripetal

acceleration of ball

 Extrapolation techniques obtain meaningful data at segment

fringes

 Metrics are then extracted from filtered, isolated waveforms

So what does that look like…?

WAVEFORM ANALYSIS

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

G
's

seconds

Ball Record: 00009
Result: 10-pin (light pocket)
Time: 17:49:53 8-29-2010

Ts: 15.015 sec, ADXL Fs: 204.792 Hz, Light Fs: 120.481 Hz

 X-axis

 Y-axis

 Z-axis

 Light

 We’ll work with this data – ambient light and 3-axis acceleration:

WAVEFORM ANALYSIS

FUNDAMENTAL FREQUENCY OF ROTATION (FR)

 Ball is released with “spin” - initial

angular velocity Av0

 Ball generally spends at least 1/3 time at

or near Av0

 Results in fundamental frequency of

rotation – FR

 Light waveform used to detect FR

 Original Fs = 120 ± 1 Hz

WAVEFORM ANALYSIS

FUNDAMENTAL FREQUENCY OF ROTATION (FR)

Find the fundamental from the ambient light waveform:

WAVEFORM ANALYSIS

FUNDAMENTAL FREQUENCY OF ROTATION (FR)

 Normalize to 1

 Interpolate to Fs = 1000 Hz (1 ms

resolution) for consistency and

increased resolution

 Apply Hamming window to lessen edge

effects

 Pad with sufficient 0’s to achieve 0.5

RPM (0.00833 Hz) resolution in FFT

WAVEFORM ANALYSIS

FUNDAMENTAL FREQUENCY OF ROTATION (FR)

 Apply FFT

 Find max spectral component (ignoring
DC and low-frequencies (<1 Hz)

 Now have FR

 FR is used to set FIR bandpass cut-off
frequencies

 FR is used to set interpolation level for
ADXL waveforms – 2n samples per Hz –
for wavelet decomposition

WAVEFORM ANALYSIS

FUNDAMENTAL FREQUENCY OF ROTATION (FR)

Frequency spectrum of interpolated ambient light waveform:

WAVEFORM ANALYSIS

FINDING SEGMENT BOUNDARIES

 Four segments
❖ Approach: Time during which bowler delivers ball to lane

❖ Release/Loft: From moment of Release until end of last
loft “bounce”

❖ Reaction: Time that ball is in continuous contact with lane,
until impact with pins

❖ Pin Impact: From 1st impact w/pins to end of waveform

 Three segment boundaries
❖ Release (Approach-Loft boundary)

❖ Last Loft Impact (Loft-Reaction boundary)

❖ First Pin Impact (Reaction-Pin Impact boundary

 Each segment boundary is marked by an “impact”

How do we find the segment boundaries?

WAVEFORM ANALYSIS

FINDING SEGMENT BOUNDARIES

WAVEFORM ANALYSIS

FIND IMPACTS USING HAAR WAVELET

 Find vector magnitude of 3-axis waveform

 Wavelet theory is based on repeated 2-level
decimation

 Interpolate so that there are 2n samples per
Hz of FR

 Used n = 5, but could be higher

 Guarantees that some level of wavelet
decomposition will hit integral harmonic of FR

 Haar wavelet handles combination of flat
components along with sudden transitions
and impact spikes

WAVEFORM ANALYSIS

FIND IMPACTS USING HAAR WAVELET

1st-level HAAR wavelet details:

WAVEFORM ANALYSIS

FIND SEGMENT BOUNDARIES FROM IMPACTS

 Detection methods:

❖ + across impact details

❖1st derivative threshold detection

❖Duration also used for pin impact

❖Loft requires start and end – looks for “flat”

portion of curve – far below mean ()

WAVEFORM ANALYSIS

FINDING SEGMENT BOUNDARIES

WAVEFORM ANALYSIS

ADXL SEGMENTS

WAVEFORM ANALYSIS

REACTION SEGMENT

WAVEFORM ANALYSIS

REACTION SEGMENT

 Comprised of three distinct components:
❖Centripetal acceleration: Generated by

centripetal force due to ball’s rapid rotation

❖Sinusoidal tilt response: SenseModule rotating
through gravitational field

❖High frequency noise: Irregularities in contact
surfaces between ball and lane, SenseModule
vibration in finger hole, and digital noise
infiltrating ADXL345

 Must isolate centripetal acceleration from
tilt-response, while filtering out noise

 Wavelets are perfect for this

WAVEFORM ANALYSIS

REACTION SEGMENT DECONSTRUCTION

WAVEFORM ANALYSIS

REACTION SEGMENT DECONSTRUCTION

 Results of 3rd and 5th-level biorthogonal
6.8 wavelet decomposition and
reconstruction

 3rd-level approximation (a3) yields tilt-
response superimposed on centripetal
acceleration

 5th-level approximation (a5) isolates
centripetal acceleration

 a3 – a5 isolates tilt-response from
centripetal acceleration

WAVEFORM ANALYSIS

REACTION SEGMENT DECONSTRUCTION

WAVEFORM ANALYSIS

REACTION TILT RESPONSE

 Compared filtering performance between FIR and wavelet
techniques for tilt response

 FIR bandpass filtering uses FR to establish pass band
❖ Low band = 0.75 * FR

❖ High band = 1.67 * FR

 Better results from FIR filter, with fringes “folded” into loft
and pin impact regions before applying Hamming window

 Expected, since tilt response is highly sinusoidal

 Wavelets used to isolate segments and REACTION
segment components (centripetal acceleration, tilt
response), while FIR filter used to remove noise from tilt-
response

 FIR results used for remainder of analysis for tilt response

 Following graph shows differences between FIR results
and wavelet results

WAVEFORM ANALYSIS

REACTION TILT RESPONSE
Difference between FIR results and Wavelet results

Wavelet results shown with dotted lines

WAVEFORM ANALYSIS

CENTRIPETAL ACCELERATION VS TILT RESPONSE

 Filtered tilt response closely follows raw data

 Centripetal acceleration response should closely
correspond with peak-to-peak tilt response

 Can use either/both to find instantaneous angular
velocity

 For tilt response, peak-to-valley, and valley-to-peak
times will give discrete angular velocity during each
half-revolution

 Centripetal acceleration curve is continuous, but
does not reflect true centripetal acceleration at
surface of ball, since SenseModule is at bottom of
finger hole

 Need to know depth of SenseModule to find angular
velocity from centripetal acceleration

WAVEFORM ANALYSIS

CENTRIPETAL ACCELERATION VS TILT RESPONSE

Raw data shown with dotted burgundy lines

WAVEFORM ANALYSIS

REACTION TILT RESPONSE EXTRAPOLATION

Loft region extrapolated from start of Reaction region

WAVEFORM

METRIC

CALCULATIONS

REVMETRIX APPLICATION

PHYSICS OF BOWLING

 Ball is released with initial linear velocity greater than
what its initial angular velocity (rate of rotation)
indicates – the ball is skidding

 Friction acts to resolve discrepancy, transferring
linear kinetic energy to angular kinetic energy

 As ball rolls down lane, it “revs” up – angular velocity
increases as linear velocity decreases

 If linear and angular velocities reach equilibrium, the
ball has stopped skidding – it has rolled out (angular
velocity now drops along with linear velocity)

 Roll out is undesirable – ball is losing more energy

 Goal is to hit pocket at a sharp angle, while the ball
is still skidding

PHYSICS OF BOWLING

 Following release, only force acting on ball is
friction between ball and lane
❖Wind resistance is negligible for dense sphere

traveling at 15-20 mph

❖ Lane is level (within 40/1000”), so no potential
energy

 Kinetic energy has two components – linear
kinetic energy and angular kinetic energy

 As ball grabs lane, angular kinetic energy
increases, linear kinetic energy drops, in
monotonic fashion

 If ball rolls out, both linear and kinetic energy
drop

WAVEFORM METRIC CALCULATIONS

 Having isolated acceleration components,
can now extract metrics of interest to
bowler:
❖RPMs: Release, impact, and instantaneous

angular velocity

❖Revolutions: Revolution count from release
through pin impact, revolution location

❖Ball Speed: Release, impact, average, and
instantaneous linear velocity

❖Loft: Distance (and approximate height)

❖Breakpoint: Location where ball starts to hook

❖Axis Tilt: Release, impact, and instantaneous
deviation of axis from parallel with lane surface

WAVEFORM METRIC CALCULATIONS

 Known quantities:

❖Instantaneous angular velocity

❖Length of lane (60 feet)

❖Travel time from foul line to head pin

 Assumptions:

❖No loss of energy, energy is conserved

❖Friction acts solely to transfer linear kinetic

energy to angular kinetic energy

❖No other forces act upon ball

WAVEFORM METRIC CALCULATIONS

 Strategy – Part I:

❖Average linear velocity can be found from

length of lane and transit time of ball

❖Changes in linear velocity are inversely

proportional to changes in angular velocity,

with no frictional loss

❖Find release linear velocity (v0) from average

velocity and changes in linear velocity

❖Develop converging iterative algorithm to

find v0

WAVEFORM METRIC CALCULATIONS

 Strategy – Part II:

❖Find instantaneous linear velocities (vi) from

release linear velocity (v0)

❖Find distances (Di) by integrating from v0ts to

vits, for sample period ts

❖Loft distance and revolution locations follow

❖Breakpoint distance follows from revolution

locations

❖Coefficient of friction follows from changes in

linear velocity or angular velocity

WAVEFORM METRIC CALCULATIONS

WAVEFORM METRIC CALCULATIONS

SOME PHYSICS AND MATH

 Total kinetic energy of ball:

𝐾 = 𝐾ω + 𝐾𝑣

 Linear kinetic energy of an object with mass m
and linear velocity v is given by

𝐾𝑣 =
1

2
𝑚𝑣2

 Angular kinetic energy of an object with mass m,
moment of inertia I, and angular velocity is

𝐾ω =
1

2
𝐼ω2

WAVEFORM METRIC CALCULATIONS

SOME PHYSICS AND MATH

 Moment of inertia I of a sphere with mass m and radius
r has the form

𝐼 = 𝑘𝑚𝑟2

 Substituting

𝐾ω =
1

2
𝐼ω2 =

1

2
𝑘𝑚𝑟2ω2

 k can be determined from mass distribution within
sphere

 USBC imposes limits on diameter and radius of
gyration (RoG) of ball which limits k to

0.3201 ≤ 𝑘 ≤ 0.4340
 Thus, I is restricted to

0.0402𝑚 ≤ 𝐼 ≤ 0.0556𝑚, (lb − ft2)

WAVEFORM METRIC CALCULATIONS

SOME PHYSICS AND MATH

 Substituting the moment of inertia into the

equation for angular kinetic energy, we get

𝐾ω =
1

2
𝐼ω2 =

1

2
𝑘𝑚𝑟2ω2

 Therefore, the total kinetic energy K of the ball is

given by

𝐾 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑚𝑟2ω2

=
𝑚

2
𝑣2 + 𝑘𝑟2ω2

WAVEFORM METRIC CALCULATIONS

AVERAGE BALL SPEED

 Finding average ball speed is simple(?):

𝑣𝑎𝑣𝑒 =
𝐷

𝑇𝑠
=

60

𝑇𝑠

Ts is transit time from release to first pin impact

 Not really that simple (assumptions):

❖Release occurs at foul line

❖Head pin is first impact

❖Ball travels from center of foul line and hits head

pin head on

❖None of those assumptions is precisely true

WAVEFORM METRIC CALCULATIONS

REVOLUTION LOCATION AND COUNT

 Finding the revolutions is relatively simple:
❖Locate peaks and valleys from filtered tilt

response waveform

❖Count peaks and valleys

❖Measure time between locations (difference in
time stamps)

❖Find RPMs for each peak-valley, valley-peak
pair

❖Average across all 3 axes yields better
resolution

❖Can extrapolate from ½-revolutions adjacent to
release and pin impact fringes

WAVEFORM ANALYSIS

REVOLUTION LOCATION
Automated Revolution Location Results

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS ANGULAR VELOCITY (RPMS)

 Half-revolution angular velocities (in RPMs) for revolution

containing peak p and valley v are given by

𝑓(𝑣−1,𝑝) =
2

𝑡𝑝 − 𝑡𝑣−1
60 (valley − to − peak)

 𝑓(𝑝,𝑣) =
2

𝑡𝑣−𝑡𝑝
60 (peak − to − valley)

WAVEFORM ANALYSIS

ANGULAR VELOCITY

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS ANGULAR VELOCITY (RPMS)

 Earlier interpolation of 25 = 32 samples

per Hz of FR yields resolution of ~10

RPMs

 Jitter of a single sample time translates

to step change of 10 RPMs

 Interpolation of 28 = 256 would increase

resolution to ~1 RPM

 Could interpolate with 3rd to 5th-order

polynomial curve-smoothing routine

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS ANGULAR VELOCITY (RPMS)

 Extract angular velocity f from centripetal acceleration Ac

 𝐴𝑐 =
𝑣2

𝑟
=

ω𝑟2

𝑟
= ω2𝑟, where 𝑣 = ω𝑟 = 2π𝑓𝑟

 ω =
𝐴𝑐

𝑟

 Recall that r is not radius of ball, but distance of SenseModule
from center of ball (SenseModule is at bottom of finger hole)

 The revolution rate f in RPMs is

𝑓 =
ω

2𝜋
60 RPMs

 During LOFT segment, Ac directly indicates centripetal
acceleration, with ball in free fall during that time

 5% discrepancy with tilt response angular velocity

 Have not yet adequately accounted for that discrepancy

WAVEFORM ANALYSIS

ANGULAR VELOCITY

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS LINEAR VELOCITY

 Assuming constant energy, any increase in angular kinetic
energy k must come from linear kinetic energy kv

𝐾0 = 𝐾𝑖 = 𝐾𝑛, for 0 ≤ 𝑖 ≤ 𝑛
 Letting Ki be the kinetic energy of ball during sample time

i, then

𝐾𝑖 =
𝑚

2
𝑣𝑖

2 + 𝑘ω𝑖
2

 Combining above two equations yields

𝑚

2
𝑣0

2 + 𝑘ω0
2 =

𝑚

2
𝑣𝑖

2 + 𝑘ω𝑖
2

 Solving for vi in terms of v0 and angular velocities

𝑣𝑖 = 𝑣0
2 + 𝑘 ω0

2 − ω𝑖
2

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS LINEAR VELOCITY

 Distance is integral of velocity with respect to time

𝐷 =

𝑖=0

𝑛−1

𝑣𝑖𝑡𝑠

 Distance D = 60 feet, and we know sample

interval 𝑡𝑠
, 𝑡𝑠 =

1

𝑓𝑠

𝐷 =

𝑖=1

𝑛

(𝑣0
2+𝑘(ω0

2 − ω𝑖
2)) ∙ 𝑡𝑠

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS LINEAR VELOCITY

 Find v0 through converging iteration, first

guess

𝑣0 = 𝑣𝑎𝑣𝑒 =
𝐷

𝑇𝑠
=

60

𝑇𝑠

 Final value for v0 must be greater than

vave, since ball slows down after release

 Evaluating at vave yields D’ < 60

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS LINEAR VELOCITY

 Next guess

𝑣0
′ = 𝑣0 +

60 − 𝐷′

𝑇

 Term (60 – D’) / T represents error in

initial linear velocity distributed across

each sample point i

WAVEFORM METRIC CALCULATIONS

INSTANTANEOUS LINEAR VELOCITY

 Iterate until error = 60 – D’ is less than

some acceptable error margin 0

 Now find all instantaneous linear

velocities from v0 and angular velocities

𝑣𝑖 = 𝑣0
2 + 𝑘 ω0

2 − ω𝑖
2

WAVEFORM ANALYSIS

INSTANTANEOUS LINEAR VELOCITY

WAVEFORM METRIC CALCULATIONS

DISTANCE

 Obtain distance at any sample point from
instantaneous linear velocity and sample
period

 Find locations on lane for
❖ Loft impacts

❖Revolutions

❖Breakpoint

 Distance Dk of ball from foul line at any time
point k is

𝐷𝑘 =

𝑖=0

𝑘−1

𝑣𝑖𝑡𝑠

WAVEFORM ANALYSIS

 Validating Metric Calculations

❖Neither easy, nor cheap

❖“Simulate” with spinning fixture, and encoders

❖High speed video

❖C.A.T.S-instrumented facility

❖E.A.R.L. – USBC’s bowling robot with C.A.T.S.

instrumented lane

http://www.youtube.com/watch?v=s8yMFdPD68c

❖Throbot – Brunswick’s version of the above

http://www.youtube.com/watch?v=QEeLNxlKRrU

http://www.youtube.com/watch?v=s8yMFdPD68c
http://www.youtube.com/watch?v=QEeLNxlKRrU

SUMMARY

AND

CONCLUSIONS

SUMMARY AND CONCLUSIONS

 SenseModule is first of its kind
❖Fits unobtrusively in an existing finger hole

❖Autonomous and transparent operation

❖Does not effect balance of ball

❖ Low cost, power, weight

 No similar commercial product on market – yet
❖ “IMU” developed at U of Michigan around same time

❖Much more expensive – uses solid-state 3-axis
gyroscopes

❖Uses separate hole for insertion

❖Much higher power requirements – rechargeable
lithium-ion battery – 4 hours of run time

SUMMARY AND CONCLUSIONS

 Difficult problem

❖Dealing with power, size, and weight

constraints

❖Creating robust autonomous operation

❖Extracting metrics from 3-axis acceleration

data

❖How to use actual acceleration readings –

rather than just tilt sensing aspect

❖Overall, more difficult than expected

SUMMARY AND CONCLUSIONS

 Commercialization

❖SenseModule platform appears to be viable

as commercial product

❖To develop robust autonomous operation

requires collecting data from a wide variety

of bowlers and bowling styles

❖Involves major research effort

❖Development of RevMetrixApp is another

major effort

SUMMARY AND CONCLUSIONS

 Intellectual property protection

❖Recent patent search revealed there is likely
IP contained within the automated
SenseModule functions:

❖Automated start-up and communications

❖False activation detection

❖Release detection and discrimination

❖Shutdown detection

❖Recent Supreme Court ruling on patenting
algorithms most likely eliminates metric
analysis algorithms from IP consideration

ONE LAST NOTE

❖ As an engineer, there is nothing as

satisfying as taking something of your

own conception from idea to reality…

❖ You will likely spend most/all of your

career getting paid to solve other

people’s problems…

❖ This effort has been more gratifying than

any paycheck I have ever received…

ONE LAST NOTE

❖ If you ever have the chance to do

something similar…

TAKE IT

QUESTIONS…?

	Slide 1: A Roll Down the Lane Measuring Bowling Ball Dynamics from the Inside
	Slide 2: RevMetrix Performance Analysis System
	Slide 3: RevMetrix Performance Analysis System
	Slide 4: RevMetrix Performance Analysis System
	Slide 5: RevMetrix Performance Analysis System
	Slide 6: RevMetrix Performance Analysis System
	Slide 7: RevMetrix Performance Analysis System
	Slide 8: Motivation for such a system
	Slide 9: Motivation for such a system
	Slide 11: Motivation for such a system
	Slide 13: RevMetrix Performance Analysis System
	Slide 14: RevMetrix Performance Analysis System Project Scope
	Slide 15: RevMetrix Performance Analysis System Project Scope
	Slide 16: RevMetrix Development
	Slide 17: RevMetrix Development
	Slide 18: RevMetrix Development
	Slide 19: RevMetrix Development
	Slide 20: RevMetrix Development
	Slide 21: Presentation Scope
	Slide 22: RevMetrix SenseModule
	Slide 23: RevMetrix SenseModule Basic Requirements
	Slide 24: RevMetrix SenseModule
	Slide 25: RevMetrix SenseModule design Constraints
	Slide 26: RevMetrix SenseModule Sensing Requirements
	Slide 27: RevMetrix SenseModule Design Constraints
	Slide 28: RevMetrix SenseModule installed Cut-Away View
	Slide 29: RevMetrix SenseModule Schematic
	Slide 30: RevMetrix SenseModule start-Up Circuit
	Slide 31: RevMetrix SenseModule Microprocessor
	Slide 32: RevMetrix SenseModule Microprocessor
	Slide 33: RevMetrix SenseModule ambient Light Sensor
	Slide 34: RevMetrix SenseModule Accelerometer
	Slide 35: RevMetrix SenseModule Non-Volatile Memory
	Slide 36: RevMetrix SenseModule PCB Layout
	Slide 37: RevMetrix SenseModule PCB Assembly
	Slide 38: SenseModule
	Slide 39: SenseModule Hardware Performance Physical Constraints
	Slide 40: SenseModule Hardware Performance Physical Constraints
	Slide 41: SenseModule Hardware Performance start-Up Circuit
	Slide 42: RevMetrix SenseModule
	Slide 43: RevMetrix SenseModule embedded Software
	Slide 44: RevMetrix SenseModule
	Slide 45: SenseModule Embedded Software Use Cases Record Sensor Data
	Slide 46: SenseModule Embedded Software Use Cases upload Sensor Data
	Slide 47: SenseModule Embedded Software Use Cases Reject False Wakeup Conditions
	Slide 59: SenseModule Embedded Software
	Slide 60: RevMetrix SenseModule EEPROM Memory Map
	Slide 61: EEPROM Memory Map configuration Page (page 0)
	Slide 62: EEPROM Memory Map Ball Pointer Page (page 1)
	Slide 63: EEPROM Memory Map Ball Pointer
	Slide 64: EEPROM Memory Map Ball Record Database (pages 2-1023)
	Slide 65: EEPROM Memory Map Ball Record
	Slide 66: EEPROM Memory Map Ball Page
	Slide 67: EEPROM Memory Map Light Page
	Slide 68: EEPROM Memory Map ADXL Page
	Slide 69: EEPROM Memory Map ADXL Sample
	Slide 70: SenseModule Embedded Software
	Slide 71: SenseModule Embedded Software MainLoop
	Slide 72: SenseModule Embedded Software ResetMode Process
	Slide 73: SenseModule Embedded Software SleepMode Process
	Slide 74: SenseModule Embedded Software WakeUpMode Process
	Slide 75: SenseModule Embedded Software CommandMode Process
	Slide 77: SenseModule Embedded Software ApproachMode/SampleMode
	Slide 78: SenseModule Embedded Software ApproachMode Process
	Slide 79: SenseModule Embedded Software ApproachMode Process
	Slide 80: SenseModule Embedded Software ApproachMode Process
	Slide 81: SenseModule Embedded Software ApproachMode Process
	Slide 82: SenseModule Embedded Software SampleMode Process
	Slide 83: SenseModule Embedded Software SampleMode Process
	Slide 84: SenseModule Embedded Software SampleMode Process
	Slide 85: SenseModule Embedded Software SampleMode Process
	Slide 86: SenseModule Embedded Software SampleMode Process
	Slide 87: SenseModule Embedded Software CleanUpMode Process
	Slide 88: SenseModule Embedded Software Ambient Light Sampling Data Flow
	Slide 89: SenseModule Embedded Software Acceleration Sampling Data Flow
	Slide 90: SenseModule Embedded Software Acceleration Sampling Data Flow
	Slide 91: SenseModule Embedded Software Sample Page Transfer and Storage
	Slide 92: SenseModule Embedded Software Sample Page Transfer and Storage
	Slide 93: SenseModule Performance
	Slide 94: SenseModule Performance Raw Data Waveforms
	Slide 95: SenseModule Performance Raw Data Waveforms
	Slide 96: SenseModule Performance Raw Data Waveforms
	Slide 99: SenseModule Performance Typical Raw Data Waveform
	Slide 100: SenseModule Performance Typical Raw Data Waveform
	Slide 101: SenseModule Performance Typical Raw Data Waveform
	Slide 102: SenseModule Performance False Activation Waveform
	Slide 103: SenseModule Performance False Activation Waveform
	Slide 104: SenseModule Performance
	Slide 105: SenseModule Performance Autonomous operation
	Slide 106: SenseModule Performance Autonomous Operation
	Slide 107: SenseModule Performance Activation and Release Detection State Machine
	Slide 108: SenseModule Performance False Activation Detection
	Slide 109: SenseModule Performance False Activation Detection
	Slide 110: SenseModule Performance False Activation Detection
	Slide 111: SenseModule Performance Valid Release Detection
	Slide 112: SenseModule Performance Valid Release Detection
	Slide 113: SenseModule Performance Valid Release Detection
	Slide 114: SenseModule Performance Shutdown Detection
	Slide 115: SenseModule Performance Shutdown Detection
	Slide 116: SenseModule Performance Shutdown Detection State Machine
	Slide 117: SenseModule Performance Shutdown Detection
	Slide 118: RevMetrix Application
	Slide 119: Waveform Analysis
	Slide 120: Waveform Analysis
	Slide 121: Waveform Analysis
	Slide 122: Waveform Analysis
	Slide 123: Waveform Analysis
	Slide 124: Waveform Analysis
	Slide 125: Waveform Analysis
	Slide 126: Waveform Analysis
	Slide 127: Waveform Analysis
	Slide 128: Waveform Analysis
	Slide 129: Waveform Analysis
	Slide 130: Waveform Analysis
	Slide 131: Waveform Analysis
	Slide 132: Waveform Analysis Fundamental Frequency of Rotation (FR)
	Slide 133: Waveform Analysis Fundamental Frequency of Rotation (FR)
	Slide 134: Waveform Analysis Fundamental Frequency of Rotation (FR)
	Slide 135: Waveform Analysis Fundamental Frequency of Rotation (FR)
	Slide 136: Waveform Analysis Fundamental Frequency of Rotation (FR)
	Slide 137: Waveform Analysis Finding Segment Boundaries
	Slide 138: Waveform Analysis Finding Segment Boundaries
	Slide 139: Waveform Analysis Find Impacts Using Haar Wavelet
	Slide 140: Waveform Analysis Find Impacts Using Haar Wavelet
	Slide 141: Waveform Analysis Find Segment Boundaries From Impacts
	Slide 142: Waveform Analysis Finding Segment Boundaries
	Slide 143: Waveform Analysis ADXL Segments
	Slide 144: Waveform Analysis Reaction Segment
	Slide 145: Waveform Analysis Reaction Segment
	Slide 146: Waveform Analysis Reaction Segment Deconstruction
	Slide 147: Waveform Analysis Reaction Segment Deconstruction
	Slide 148: Waveform Analysis Reaction Segment Deconstruction
	Slide 149: Waveform Analysis Reaction Tilt Response
	Slide 150: Waveform Analysis Reaction Tilt Response
	Slide 151: Waveform Analysis Centripetal Acceleration vs Tilt Response
	Slide 152: Waveform Analysis Centripetal Acceleration vs Tilt Response
	Slide 153: Waveform Analysis Reaction Tilt Response Extrapolation
	Slide 154: RevMetrix Application
	Slide 155: Physics of Bowling
	Slide 156: Physics of Bowling
	Slide 157: Waveform Metric Calculations
	Slide 158: Waveform Metric Calculations
	Slide 159: Waveform Metric Calculations
	Slide 160: Waveform Metric Calculations
	Slide 161: Waveform Metric Calculations
	Slide 162: Waveform Metric Calculations Some Physics and Math
	Slide 163: Waveform Metric Calculations Some Physics and Math
	Slide 164: Waveform Metric Calculations Some Physics and Math
	Slide 165: Waveform Metric Calculations Average Ball Speed
	Slide 166: Waveform Metric Calculations Revolution Location and Count
	Slide 167: Waveform Analysis Revolution Location
	Slide 168: Waveform Metric Calculations Instantaneous Angular Velocity (RPMs)
	Slide 169: Waveform Analysis Angular Velocity
	Slide 170: Waveform Metric Calculations Instantaneous Angular Velocity (RPMs)
	Slide 171: Waveform Metric Calculations Instantaneous Angular Velocity (RPMs)
	Slide 172: Waveform Analysis Angular Velocity
	Slide 173: Waveform Metric Calculations Instantaneous Linear Velocity
	Slide 174: Waveform Metric Calculations Instantaneous Linear Velocity
	Slide 175: Waveform Metric Calculations Instantaneous Linear Velocity
	Slide 176: Waveform Metric Calculations Instantaneous Linear Velocity
	Slide 177: Waveform Metric Calculations Instantaneous Linear Velocity
	Slide 178: Waveform Analysis Instantaneous Linear Velocity
	Slide 179: Waveform Metric Calculations Distance
	Slide 190: Waveform Analysis
	Slide 193:
	Slide 194: Summary and Conclusions
	Slide 195: Summary and Conclusions
	Slide 196: Summary and Conclusions
	Slide 197: Summary and Conclusions
	Slide 198: One Last Note
	Slide 199: One Last Note
	Slide 200

