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ABSTRACT 

This paper summarizes the design, development, and testing of a performance analysis system 
intended to directly capture the various dynamic forces that a bowling ball experiences, from 
within the bowling ball itself.  The sensor module at the heart of the system is designed to reside 
in the ball, at the bottom of a finger hole, underneath a finger insert.  The sensing capabilities of 
this in situ module enable it to not only capture the reaction of the ball as it rolls down the lane, 
but also to record the motion of the ball as the bowler goes through their1 approach, the 
impetus the ball experiences as the bowler applies “lift” and “turn” to it as part of their release 
motion, the ball’s reaction to being lofted as the result of release, as well as the reaction of the 
ball as it drives through the pins and into the pit. 

The sensor module presented in this paper is a greatly updated and enhanced version of the 
SMARTDOT module, originally presented in the author’s Computer Science Master’s thesis, “A 
Performance Analysis System for the Sport of Bowling” (Penn State Harrisburg, May 2002).  The 
system presented in that thesis captured the changing ambient light level at the sensor module 
as the ball rotated under the overhead lighting, and then later inferred the angular velocity of 
the ball from that waveform.  That sensing methodology was utilized (at the time the research 
was conducted) due to the relatively inexpensive nature of light sensing technology compared 
to the cost of using an onboard accelerometer to directly measure the ball’s motion. 

In the interim, however, micro-machined accelerometers have undergone a dramatic drop in 
size, cost, and power requirements, while their functionality and overall performance have 
increased considerably.  In addition, highly configurable “system-on-a-chip” microprocessors 
have become readily available that offer tremendous improvements to the original SMARTDOT 
module’s capabilities, while also reducing the overall production cost of the module. 

As such, this paper presents a next-generation sensor module design based upon a state-of-the-
art system-on-a-chip microprocessor that interfaces with a 3-axis accelerometer, ambient light 
sensors, and expanded non-volatile memory for data storage and retrieval.    The sensor module 
has been designed from the outset to be an inexpensive, consumer-based product that is user 
installable and replaceable.  Careful consideration has also been given to creating a module 
whose presence and operation is completely transparent and unobtrusive to the user, with 
additional consideration applied to the module’s physical design so that its presence in the ball 
has minimal impact on the ball’s static and dynamic balance. 

This presentation includes the design and implementation of a fully functional in situ sensor 
module: the physical design constraints; the hardware and sensor requirements, schematic, and 
PCB layout; the microprocessor configuration; the embedded software requirements, design, 
and implementation; as well as a summary of the module’s performance under real-world 
conditions. 

Breakdown and analysis of the raw data waveforms is included, along with a presentation of the 
preliminary algorithm development for reliably extracting and deriving a set of useful bowling 
metrics from the collected sensor data.  The resulting raw data filtering and waveform analysis 
algorithms rely heavily on the application of Fast Fourier Transforms in combination with 
techniques taken from Wavelet Theory. 

                                                             
1 In the absence of a standard set of gender-neutral pronouns, the author uses "they", "them", and "their" 
as the gender-neutral forms of "s/he", "him/her", and "his/her" throughout the document.  
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Section I: Introduction and Background 

1.1 Statement of the Problem2 
The research presented in this paper is a continuation, refinement, and extension of the 

author’s previous development of the original SMARTDOT system presented in his Master’s 

Thesis, “A Performance Analysis System for the Sport of Bowling” [1]. 

Bowling is often considered a game of accuracy, but it is actually a game of errors.  The goal of 

any experienced bowler is to find the optimal combination of style, equipment, and lane 

adjustments that affords the greatest margin of error while still allowing the bowler to 

consistently deliver the ball to the pocket with sufficient force, angle, and "action" to generate 

strikes.  Success with this strategy requires a combination of factors: the bowler's natural talent 

and ability, refined by a generous amount of coaching and practice; experience with "reading" 

lane conditions and making adjustments to the inevitable changes in those conditions; and the 

selection and use of the proper equipment, e.g., picking the right bowling ball for the conditions. 

Bowling balls are available in a variety of weights, balances, hardnesses, and surfaces.  Those 

four variables, combined with the bowler’s style, determine when and how much the ball hooks, 

and how hard it hits the pins.  The bowler selects a bowling ball from their collection based on 

his or her bowling style and the current lane conditions, which are determined by the lane oil 

distribution. 

As a bowling ball rolls down a lane, a great deal of friction is generated between the ball and the 

lane surface.  The linear velocity of the ball can approach 20 mph, while the angular velocity can 

easily exceed 300 rpms.  To limit the wear on the lane, as well as to make the lane “playable”, 

special lane-dressing oil is regularly applied to the lane.  Lane oil is generally applied with a 

varying density both across and down the lane which affects the "playability" of the lane, 

making it easier or more challenging for the bowler to consistently deliver the ball to the strike 

pocket. 

As bowling balls repeatedly roll through the lane oil, they redistribute that oil over time, 

changing the oil pattern as a bowling session progresses.  The effects of that change can be 

quite noticeable, sudden, and dramatic.  A primary concern for all bowlers is to quickly identify 

those changes, and correctly adjust to that changing oil pattern.  

The bowling ball is the bowler's “oil sensor” for determining where the lane oil is (and isn't), as 

well as how that oil distribution is changing.  Based solely on observing the ball's reaction to the 

lane, the bowler adjusts to the ever-changing lane condition by drawing upon their past 

experience with the results of various adjustments made under similar circumstances.  Those 

adjustments usually involve lateral changes in the starting location on the approach and/or the 

target on the lane, an increase or decrease in the speed of the ball, and/or a switch to a ball that 

hooks more, or less, or sooner, or later, etc.  The bowler may also opt to change the amount of 

                                                             
2 Portions have been excerpted and/or paraphrased from the Abstract and Problem Statement from [1], 
with appropriate edits and updates applied. 
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turn, lift, and/or loft they apply to the ball during release, with the intention of changing the 

amount the ball hooks. 

If the bowler does not release the ball with consistent amounts of speed, turn, lift, and loft (the 

variables that directly affect the ball's reaction with the lane), it is particularly difficult to 

accurately assess the condition of the lanes, let alone how that condition is changing.   It has 

always been difficult to accurately quantify a bowler's relative level of consistency.  It has been 

equally difficult to quantify and compare the relative performance of different types of bowling 

balls. 

Current technology offers precious little to the serious bowler in search of ways to analyze and 

improve their game.  All of the existing methods currently available to the bowler rely on 

acquiring some type of "external" view of the ball (from the bowler's perspective) as it rolls 

down the lane.  The goal of such systems is to quantify the various factors (release velocity, 

rotation rate, ball loft distance, etc.) that contribute to the ball's reaction and, ultimately, to the 

bowler's performance.  However, not only are those externally-based methods time-consuming, 

inconvenient, and/or expensive to install and use, but they each have their own inherent 

limitations resulting from their external view of the ball. 

As of this writing, no devices of the nature described in the current literature have been brought 

to market with regards to bowling [1], [4], [7].  Between the inconvenience, expense, and 

narrow availability of external (instrumented lane) solutions, and the dearth of internal 

solutions, it remains particularly difficult for a bowler to accurately and adequately assess the 

various impacts that changes in bowling style and bowling equipment have on their game.  

Without such timely and consistent feedback on changes in wrist and hand position, arm swing, 

stance, and grip, as well as changes in equipment (ball type, weight, balance, and/or surface), 

the bowler generally participates in a guessing game when assessing the effectiveness and 

usefulness of any of these considerations. 

At the time of the development of the first SMARTDOT sensor module, solid-state accelerometers 

were prohibitively expensive for use in a low-priced (sub-$50.00 MSRP) consumer electronics 

device.  As such, the original SMARTDOT module relied on a far less expensive solution based on 

an ambient light sensor, and a piezoelectric film sensor that doubled as the start-up circuit and 

the impact sensor.  The ambient light sensor was used to detect the varying light level at the 

sensor module as the ball rolled down the lane, while the module’s microprocessor sampled the 

light waveform and stored the resulting sensor data in external EEPROM for later analysis. 

Subsequent analysis of the captured ultimately waveform revealed that it was difficult to 

reliably deduce the instantaneous angular velocity of the ball from the sampled light data.  

There was also no practical method to verify that the extraction techniques that the author 

proposed and eventually implemented had accurately reconstructed the motion of the ball. 

Figure 41 in Appendix A (page 116) depicts the layout of a typical bowling lane, including the 

overhead lighting sources, and the generalized ambient light waveform that both the original 

SMARTDOT module and the next-generation module collect. 
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With the passage of time, sufficiently inexpensive, 3-axis, micro-machined accelerometers have 

become readily available within a price range that makes them practical for inclusion in the 

sensor module application.  Also, mixed-signal semiconductor technology has advanced to the 

point where small, low-power system-on-a-chip microprocessors are now available that greatly 

reduce the component count (and cost), while adding a great deal of functionality and 

processing power to the application. 

This paper summarizes the design and development of a greatly updated and enhanced version 

of the original SMARTDOT module, utilizing an 8-bit system-on-a-chip microprocessor, a 3-axis 

micro-machined accelerometer, a light level sensor, and an ambient light-based start-up circuit.  

The enhanced capabilities of this next-generation sensor module allow it to capture an 

"internal" view (from the bowling ball's perspective) of the dynamics that the ball experiences 

throughout its journey to the pins.  The new sensor module not only captures the interaction of 

the ball with the lane surface as it rolls down the lane, but also captures the motion of the ball 

as the bowler goes through their approach, the impetus they apply to the ball at the time of 

release, and the ball’s reaction as it drives through the pins. 

The new sensor module is part of the overall REVMETRIX system, consisting of three components: 

 The SenseModule (SM): An in situ sensor and data collection module that resides in the 

ball at the bottom of a finger hole, underneath a finger insert, as shown in Figure 1. 

 The ComModule (CM): A wireless communications module that serves as the interface 

between the SM and the RevMetrix application.  Currently, the ComModule connects to 

the host platform (a PC) via a USB cable, but could be connected wirelessly in the future. 

 The RevMetrix application (RMApp): A multi-platform (PC, tablet, smart phone) software 

application that uploads, archives, analyzes, and displays the data captured by the 

SenseModule and retrieved through the ComModule. 

In the interest of brevity, the terms SenseModule and SM, ComModule and CM, and 

RevMetrixApp and RMApp are used interchangeably throughout the paper. 
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1.2 SenseModule Installation 
Figure 1 shows a cut-away view of the REVMETRIX SenseModule, as installed in the bowling ball 

underneath a finger insert in an existing finger hole. The case that will hold the SenseModule 

and battery has not yet been designed, and is not shown. 
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Figure 1: SenseModule Cut-Away View 
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1.3 A Summary of the Physics of Bowling3 
Bowlers attempt to make a bowling ball hook in order to generate more pin action.  Industry 

research has shown a direct correlation between a bowling ball’s angle of entry into the strike 

pocket, and the chance of generating a strike [1].  During release, the bowler imparts an axis of 

rotation to the ball that is turned and/or tilted away from normal, which is intended to make the 

ball hook towards the pocket.  It is the interaction of the linear and angular velocities of the ball 

with the frictional force acting between the ball and the lane that causes the ball to hook. 

In order to control the amount the ball hooks, the bowler releases the ball with various 

combinations of speed, loft, lift, turn, and tilt.  Those five terms are defined below: 

1) Speed: The initial linear velocity of the ball as it leaves the bowler’s hand.  The higher 

the initial velocity, the less opportunity for the ball to hook, but the more energy the 

ball can impart to the pins.  The bowler varies the initial velocity of the ball by adjusting 

the push-away height of the ball at the start of their approach, their approach speed, 

and/or their arm swing speed.  

2) Loft: The longitudinal distance the ball travels before making initial contact with the 

lane.  The longer the loft distance, the less opportunity the ball has to hook.  The bowler 

can control the loft distance through the release velocity and release point of the ball: 

an earlier release directs the ball parallel to the lane surface; a later release directs the 

ball upwards, away from the lane surface.  For any given loft height, a higher release 

velocity causes the ball to travel further before striking the lane. 

3) Lift: Lift is the initial angular velocity that the bowler applies to the ball during release.  

It causes the ball to begin rotating before hitting the lane.  The more lift the bowler 

applies during release, the higher the initial angular velocity of the ball.  With the proper 

axis turn and tilt, more lift increases the potential amount the ball will hook. 

4) Turn: The amount that the ball’s axis of rotation is rotated away from normal 

(orthogonal to the direction of travel).  The ball will eventually hook toward the 

direction that the axis of rotation is turned.  The more the bowler turns the axis away 

from normal (with respect to the direction of travel), the more potential the ball has to 

hook.  If the initial axis of rotation is normal to the initial direction of travel, and parallel 

to the lane surface, the ball will not hook, except due to weight imbalances in the ball. 

5) Tilt: The amount that the ball’s axis of rotation is rotated with the respect to the lane 

surface.  More tilt implies more “spin” – the extreme would be that the ball spins like a 

top (the rotational axis is perpendicular to the lane surface).  Increased axis tilt delays 

the ball from hooking in the direction of the axis turn. 

After the bowler releases the ball, the only external force of any significance that acts upon the 

ball is the force due to friction generated between the ball and the lane (this force varies a great 

                                                             
3 Excerpted and/or paraphrased from Section 1.2 “Introduction to the Physics of Bowling” in [1], with 
appropriate edits applied. 
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deal due to the variations in oil distribution on the lane).  A bowler invariably releases a ball with 

an initial linear velocity (speed) that is greater than that which would result from the ball's initial 

angular velocity (lift).  In other words, the distance the ball travels during one complete 

revolution is greater than the circumference of the ball (the ball is skidding or sliding as it is also 

rotating). 

As long as the ball is skidding, friction acts to transfer some of the ball's linear momentum into 

angular momentum, decreasing the linear velocity while increasing the angular velocity.  Thus, 

as the ball “revs up”, it slows down.  If the linear and angular velocities completely resolve 

themselves, the ball is no longer skidding (it has rolled out), and the frictional force now causes 

the angular and linear velocities of the ball to decrease in direct proportion to each other [5]. 

There is also a significant internal dynamic force that acts upon the ball; the changing rotational 

inertia of the ball due to imbalances in specially shaped weight blocks designed for just such a 

purpose.  Such weight blocks can delay or accelerate the reaction of the ball with the lane [6]. 

A small percentage of the ball's linear momentum is also lost due to wind resistance, and the 

heat, noise, and vibration generated as the surfaces of the ball and the lane rub against each 

other. 

The 3-axis accelerometer and the ambient light sensor are used to capture the following forces 

acting upon the ball: 

1) The impetus the bowler applies to the ball, from the start of the approach to the moment 

of release: the speed of the approach, the speed of the ball through the arm swing, the 

lift, turn, and tilt the bowler applies to the ball during release. 

2) The moment of release, the moment(s) of impact with the lanes, and the various impacts 

with the pins. 

3) The ball’s 3-axis angular velocity due to the frictional force between the ball and the lane 

surface from its initial impact with the lane, to the time it falls into the pit at the end of 

the lane. 

By measuring the time between release and impact, and noting the duration of each revolution 

of the bowling ball, it is possible to derive the angular velocity of the ball for each revolution, 

and the energy necessary to induce this change in angular velocity.  The average linear velocity 

of the ball and the changes in the ball's angular velocity during the course of the shot can be 

combined with certain assumptions regarding momentum and energy conservation and friction 

to derive the instantaneous linear velocity and longitudinal location of the ball.   Using the same 

criteria, it is also possible to derive the varying frictional force between the ball and the lane. 

The mathematical details of those calculations are presented in the authors’ original paper [1], 

and have been included in the appendices of this paper. 
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1.4 Scope of the Paper/Project 
The development of the SenseModule, the performance results, and the analysis of the collected 

data is presented in the following sections: 

 Section II presents the SenseModule design constraints, hardware requirements, and 

module implementation. 

 Section III presents the SenseModule embedded software requirements, design, and 

implementation. 

 Section IV presents the SenseModule performance results, including examples of the 

collected sensor data. 

 Section V presents the initial data analysis algorithm development, error analysis, along 

with suggestions for future work. 

 Section VI presents a summary of the entire project. 
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Section II: SenseModule Hardware Requirements and Implementation 

The REVMETRIX system consists of a microprocessor-based data collection sensor module 

referred to throughout this paper as the SenseModule (SM), which interacts with an external 

wireless communications module referred to as the ComModule (CM).  The SM transfers the raw 

sensor data that it collects to the CM, which is connected to a smartphone, tablet, or PC for data 

archival, analysis, and presentation by the RevMetrix application (RMApp). 

The SenseModule is designed to collect accelerometer and ambient light data with a sufficient 

granularity so that the RevMetrix application can provide accurate and meaningful analysis of 

that data.  As with the first version of the SMARTDOT sensor module, the key to the feasibility of 

the system has been the initial development of the SenseModule.  Thus, the initial design, 

development, and implementation of the SenseModule have been directed towards collecting 

that data so that an initial analysis of the data could be performed.    This section discusses the 

design assumptions, constraints, and capabilities of the SenseModule. 

As far as the author has been able to discover, the manner in which the SenseModule captures 

the data (autonomously, with an inexpensive module, from within an unaltered bowling ball) 

has never before been accomplished, although it must be noted that this not the only time that 

this data has been collected.  The closest reference found in the literature was published within 

two months after the conclusion of the testing performed for this paper.  The “IMU” (Inertial 

Measurement Unit) specified in [7] utilizes a 3-axis accelerometer and two rather expensive 

angular-rate gyros, along with a wireless transmission unit.  It is placed in a separate 1.25” hole, 

drilled to a depth of ~2.5”, and such an installation could certainly impact the balance 

characteristics of the ball.  Additional references appear in the literature for “the first 

instrumented bowling ball” [1] and to “performance analysis with an instrumented bowling ball” 

[4] , but those instances rely on measurements obtained from bowling balls so highly altered 

and weighed-down with force transducers as to be rendered unusable for normal play. 

2.1 Physical and Functional Requirements  

2.1.1 Physical Design Constraints 

The SenseModule must conform to a varied collection of physical, economic, and electronic 

constraints.  These design constraints are similar to that of the original SMARTDOT module. 

1) Transparent: The presence and operation of the SenseModule must not be apparent to 

the bowler.  The SM must start up, operate, and shut down automatically, without any 

user intervention – the bowler should not be able to detect the presence of the SM, and 

the operation of the SM should not impact the bowler’s normal routine in any way. 

2) Small and light weight: The SenseModule must be sufficiently small enough that it can 

be located at the bottom of a finger or thumb hole.  It must also be as lightweight as 

possible to minimize its impact on the static and/or dynamic balance of the ball.  
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Nominally, it should have a similar weight as any excess material that must be removed 

from the finger hole in order to install the module. 

3) Low cost: The SenseModule must be inexpensive relative to the cost of a state-of-the-

art bowling ball, since the bowler will likely need multiple SM’s, as it will be 

inconvenient to switch a single SM between multiple bowling balls. 

4) Low power: Since the SenseModule is battery powered, and the battery comprises a 

significant fraction of the SM’s size and weight, the SM should be designed to draw 

minimal current at all times.  The SM must spend the vast majority of its time in a micro-

power standby mode, and have a means for automatically detecting the bowler’s 

presence, release of the ball, and shutdown of sampling to conserve battery life. 

5) Replaceable: Ideally, the SenseModule should be user-installable, and the battery 

should be rechargeable and/or user-replaceable. 

2.1.2 Sensors 

The SenseModule must be able to sense the start-up condition, the motion of the ball while in 

the bowler’s hand, the bowler’s release of the ball, the ball’s impact with the lane and the pins, 

and the rotation of the ball.  The SM must be able to accurately sense the passage of time, with 

microsecond resolution, and record time-stamped digitized waveforms of the various sensors.  It 

must also automatically detect the presence of, and communicate with, the ComModule. 

The original SMARTDOT module has two sensors: a piezoelectric film sensor used to detect start-

up/release and the ball’s impact with the lane and the pins; and an ambient light sensor used to 

detect the moment the bowler released the ball, and then to infer the rotation of the ball 

through the changes in the ambient light level, which only occur after release.  The light sensor 

also doubles as the infrared receiver for communication with the COMM wand. 

The new SenseModule is based upon a 3-axis accelerometer, although the SM still has a light 

sensor.  With the inclusion of an accelerometer, the SM is able to directly sense the motion and 

rotation of the ball and, by extension, certain movements of the ball during the bowler’s 

approach and release.  The accelerometer is also able to sense the ball’s impact with the lane 

and the pins.  The SM periodically samples the three axes of the accelerometer, and stores those 

readings in non-volatile memory for later transfer to the ComModule via an infrared interface. 

The ambient light sensor has been carried over from the original SMARTDOT module.  It is used to 

detect the presence of the bowler’s finger in the finger hole (and the presence of the CM), and 

serves as the optical receiver for communications purposes.  The SM also periodically samples 

the light sensor and stores those readings along with the accelerometer data.  As part of follow-

up research to the original paper, the ambient light data will be correlated with the 

accelerometer data to ascertain the relative accuracy of the methods implemented in the 

previous paper for inferring the motion of the ball from the captured ambient light waveform. 

The inclusion of an accelerometer mostly supplants the function of the piezoelectric film sensor 

used in the original SMARTDOT module.  However, the piezo film also served as a passive start-up 
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sensor for the SMARTDOT module.  Unfortunately, the accelerometer draws too much current to 

be used in the start-up circuit.  Therefore, a different method for sensing start-up has been 

developed that eliminates the need for the piezo film sensor. 

The new light-based start-up circuit indirectly detects that the bowler has placed their finger in 

the finger hole (or placed the CM over the hole).  Since the existing ambient light sensor also 

draws too much current to remain constantly powered, the start-up circuit uses a separate, low-

cost photo-transistor as part of a micro-power circuit that continuously monitors the light level 

reaching the SM.  When the light level falls below a certain threshold for a given amount of 

time, the start-up circuit, combined with a micro-power comparator on the microprocessor, 

wakes up the rest of the SM.  This new light-based start-up circuit draws less than 2 A of 

current, and rejects the vast majority of spurious light pulses.  It may eventually be possible to 

combine the two light sensing circuits, but that was not a goal for this version of the module. 

2.1.3 Microprocessor 

Since the SenseModule must be small, low cost, and draw little current, a small form-factor, 8-

bit microprocessor made the most sense for this application.  Since the development of the 

original SMARTDOT module, small, low-cost, versatile, and powerful system-on-a-chip 8-bit 

microprocessors have become readily available, and sufficiently inexpensive for this application. 

Such microprocessors now contain comparators, analog-to-digital converters, built-in 

programmable clock sources, on-chip non-volatile, in-system writeable flash memory, expanded 

code memory and RAM, and many other functions. 

Ideally, the microprocessor for the SM must possess the following qualities: 

1) Small form factor 
2) Low cost 
3) Low power (whether in standby mode, idle mode, or while executing code) 
4) Internal reset circuitry 
5) Internally generated system clock (no external components required) 
6) A micro-power real time clock function 
7) On-board analog functions such as low-power comparators, a multi-channel ADC, a 

voltage reference, programmable constant-current source, etc. 
8) Configurable port pins 
9) In-system circuit emulation and flash programming 
10) Hardware support for serial EEPROM and serial communications 
11) Sufficient on-board RAM for data capture buffers, serial communication buffers, etc. 

2.1.4 External Memory 

The SenseModule collects sample data from four sensor channels (the ambient light sensor, and 

the three accelerometer axes), and must sample at a rate sufficient to accurately detect 

transient occurrences such as the ball’s impact with the lane and impact with the pins.  The 

sample memory should also be large enough to accommodate all 12 possible first shots of each 

frame (the first 9 frames, plus 3 possible shots in the 10th frame), and ideally at least one game’s 

worth of data, a maximum of 21 shots (2 each in the first 9 frames, plus 3 in the 10th frame). 
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The memory must be non-volatile, and draw little current while not being accessed.  It must also 

easily interface to the microprocessor to limit the execution time (and battery power) spent on 

accessing the memory. 

2.1.5 Communications 

The SenseModule captures the raw sensor data and stores it in external non-volatile memory 

until such time as it can transfer that data to the ComModule.  The transfer medium must be 

wireless (non-contact) since the SM resides at the bottom of a finger hole.  Given that the SM 

already has an optical receiver, and requires just a single LED for transmission, the most cost-

effective method for the wireless transfer is via an optical interface (visible or infrared).  The 

communications requirement imposes additional response time challenges on the ambient light 

sensor.  Whereas the ambient light waveform may vary at a 10-20 Hz rate while the ball is 

rolling, the ambient light sensor must also be fast enough to accept firmware updates of 4-8 KB 

in a timely fashion (no more than a few seconds). 

2.2 SenseModule Component Selection  
Major component selection is presented below, along with a summary of each component.  

Links to the manufacturer’s data sheets are provided in the bibliography.  A theory of operation 

for the overall SenseModule circuit, as well as for each of the individual sub-circuits of the SM 

follows the schematic.  The current schematic diagram for the SM is given in Figure 2 on the 

following page.  The layout of the printed circuit board (PCB) used to build the SenseModule 

prototypes is shown in Figure 3 (top) and Figure 4 (bottom). 

 Start-Up Phototransistor (T1): Optek Technology OP521 Phototransistor [27] 
 Spectral Responsivity: 550-1060nm (25%), 910nm (peak) 
 Operating Range: -25 to 85°C 

 Microprocessor (IC1): Silicon Laboratories 8051F921 8-Bit Flash Microcontroller [23] 

 Programmable internal oscillator, 3 to 24.5 MHz,  2% accuracy 

 Real-Time Clock (smaRTClock w/32kHz crystal, 0.5 A supply current) 
 On-chip debug circuitry for full-speed in-system debugging 
 10-Bit 300 Ksps ADC, 15 single-ended or differential inputs 

 Two, low-power (< 0.5 A) comparators, available even when P is stopped 
 Programmable hysteresis and response time 
 Configurable as interrupt or reset sources 

 4352 bytes on-board data RAM (256 + 4KB XRAM) 
 32 KB flash program memory, in-system programmable in 1024-byte sectors 
 Four general purpose 16-bit counter/timers 
 UART, SMBus (I2C), and SPI serial ports 
 Supply Voltage: 0.9 – 3.6 volts (on-board DC-DC converter for 0.9 to 1.8 volts) 
 Supply Current: 

 4.1 mA at 25 MHz 

 11 A at 32 kHz 

 0.6 A in stop mode, w/smaRTClock enabled 

 0.05 A w/smaRTClock off 
 Operating Range: -40 to 85°C  
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 External Memory (IC2): Microchip 24FC1025 I2C Serial EEPROM (128 KB) [24] 
 Clock Frequency (max): 1 MHz (400 kHz for VCC < 2.5V) 
 Write Mode: 128-byte pages, 5 ms write cycle time (max) 
 Supply Voltage: 1.8 - 5.5V 

 Standby Current: 100 nA typical at 5.5V (1 A max over temp range) 

 Supply Current (max): 400 A at 5.5V (read), 3 mA at 5.5V (write) 
 Operating Range: -40 to 85°C 

 Ambient Light Sensor (IC3): AMS TSL13T Light-To-Voltage Converter [26] 
 Spectral Responsivity: 350-1020 nm (25%), 775nm (peak) 

 Turn-On Time (0-100%): 40 s (typical) 

 Rise Time (10-90%): 7.2 s (typical) 

 Fall Time (10-90%):  6.8 s (typical) 
 Supply Voltage: 2.7 - 5.5V 

 Supply Current: 660 A at 3.0V (typical), 1.0 mA (max) 
 Operating Range: 0 to 70°C 

 Accelerometer (IC4): Analog Devices ADXL345 3-axis Digital Accelerometer [25] 
 Dual Operation: simultaneous operation as accelerometer and tilt-sensor 
 I2C and SPI command and data digital interfaces 
 32-level sample FIFO 
 Built-in motion detection functions 
 Configurable interrupt modes mappable to two interrupt pins 

 Acceleration Range: Configurable to  2/4/8/16g 

 Sensitivity: 4 mg/LSB in all g-ranges (13-bits for  16g) 
 Shock Survivability: 10,000g (min) 
 Bandwidth: Configurable (max 3200 Hz sample rate) 
 Turn-On Time: 1.4 ms (typical) 
 Supply Voltage: 2.0 - 3.6V 

 Supply Current: 130 A at 2.5V (typical) 
 Operating Range: -40 to 85°C 

 Battery: Panasonic CR2016 (110 mAh), CR2025 (165 mAh), CR2032 (220 mAh) Battery [28] 

 3V Lithium Coin Cell  
 Operating Range: -30 to 80°C 
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2.3 SenseModule Schematic Diagram 
The schematic diagram for the SenseModule used to collect the data presented later in this paper is 

given in Figure 2 below.  The schematic was created using V5.0 of CadSoft’s Eagle Schematic and PCB 

Layout software [19]. 

 Figure 2: SenseModule Schematic Diagram 
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2.4 SenseModule PCB Layout 
The SenseModule printed circuit board layouts in Figure 3 and Figure 4 below were created from the 

schematic shown in Figure 2.    The PCBs were laid out using V5.0 of CadSoft’s Eagle Schematic and PCB 

Layout software [19]. 

 

  

Figure 3: SenseModule PCB Layout (Top) 

Figure 4: SenseModule PCB Layout (Bottom) 
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2.5 SenseModule Theory of Operation 
The SenseModule schematic is divided into five distinct sub-circuits: 

 Start-up circuit 

 Microprocessor (P) and memory circuit 

 Ambient light sensor circuit (doubles as receiver) 

 Accelerometer circuit 

 Transmitter circuit 

The start-up circuit is always active and uses one of the microprocessor’s on-board comparators (CP0) to 

constantly monitor the ambient light level for signs of user activity.  Under the proper circumstances, 

the comparator issues a reset signal to the microprocessor, which causes the SM to wake up from 

standby mode.  In order to conserve battery power, and minimize the size of the battery, the start-up 

circuit is designed to draw less than 2 A at all times. 

Although IC1 (8051F921 microprocessor), IC2 (24FC1025 EEPROM), and IC4 (ADXL345 3-axis 

accelerometer) are always powered, they are all in stopped or halted states that draw very little current 

while the SM is in standby mode.  When the start-up circuit wakes the SM, the P selectively supplies 

power to IC3 (TSL13 Light-to-Voltage Converter), and wakes up the ADXL345 circuit, as needed.  For the 

same reasons as the start-up circuit, the entire SM is designed to draw minimal (< 3 A) combined 

quiescent current while in standby mode.  Since the SM is powered by a 3V lithium coin cell, the average 

current that the SM draws while running is limited to approximately 1 mA.  That current specification 

imposes a limitation on the maximum system clock frequency. 

The ambient light sensor circuit is selectively powered by the microprocessor.  The ambient light sensor 

performs double duty: it senses the ambient light level while the SM is collecting sensor data; and it 

serves as the infrared communications receiver for ComModule transmissions. 

The SM applies power to the accelerometer circuit only while the SM is collecting sensor data.  The 

accelerometer is powered-off, otherwise.  The accelerometer can sense the following events: 

 Motion of the ball during the bowler’s approach and release 

 Tilt of the ball in all three dimensions with respect to gravity 

 Impacts of the ball with the lane and the pins 

 Linear and angular acceleration of the ball as it rolls down the lane. 

The optical transmitter is only powered when the SM is responding to a CM command – generally while 

transferring sensor data to the CM.  The transmitter software implements an inverted return-to-zero 

(iRTZ) serial UART protocol, in which the space state (logic 1) is dark, and the mark state (logic 0) is a 

light pulse of  50% duty cycle.  The LED has been chosen to maximize light output at low current, and is 

driven by the P’s programmable constant current source, set for 500 A LED current. 

2.5.1 Start-Up Circuit 

Requirements for the operation of the SenseModule include that it must be automatic and transparent 

to the bowler.  The presence of the SM must not impinge on the bowler’s normal “feel” for the ball.  

Further, operation of the SM while in its data collection mode must not alter the bowler’s normal 

routine in any way. 
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The SM has low quiescent power consumption under all ambient lighting conditions.  The start-up circuit 

is always powered, and must be available to start the microprocessor at any time, without any 

intentional interaction on the part of the bowler, except for placing a finger in the insert as part of their 

normal delivery.  Furthermore, it cannot be assumed that the ball will be stored in a dark ambient 

condition, i.e., a bowling ball bag, locker, or closet.  Thus, the circuit draws very low current whether 

phototransistor T1 is exposed to constant dark conditions, constant light conditions, periodic light-to-

dark and dark-to-light transitions resulting from the normal rolling of the ball, or to the 120 Hz 

waveform that overhead fluorescent lights in a bowling establishment impose on the ambient 

background light. 

The start-up circuit issues a start-up signal whenever the bowler places a finger in the insert, or when 

the ComModule is placed over the finger hole.  The value of R1 and the ratio of R3 to R4 have been 

selected such that T1 is driven sufficiently conductive under ambient background conditions so that the 

act of placing a finger in the insert (or covering the finger hole with the CM) causes a light-to-dark 

transition.    Assuming that some background light is present, either of those conditions will sufficiently 

reduce the ambient light reaching T1 to cause T1 to cease conducting. 

The start-up circuit is designed to be insensitive to most nuisance light-to-dark transitions.  There are 

many instances that can cause such transitions: 

 Ball rolling over the finger hole on the ball return  

 Ball rolling on an above-ground ball return 

 Ball spinning on the ball return wheel in the pinsetting machine 

 Ball being picked up without a finger placed in the insert 

 Jostling of the ball while other bowling balls are being retrieved, or by other balls coming back to 
the ball return 

The start-up circuit must also not issue a start-up signal when the module is already operational: 

 While the ball is rolling down the lane 

 During communications with the ComModule 

The start-up circuit for the module consists of phototransistor T1 (Optek 521), resistors R1–R5, 

capacitors C1 and C2, and the P’s on-board CP0 comparator.  When CP0 is configured as part of the 

start-up circuit, its inputs and asynchronous output (CP0A) are assigned to the following P port pins: 

 CP0+ (positive input):   P1.2 

 CP0- (negative input):   P1.3 

 CP0A (asynchronous output):  P1.4 

The voltage at the junction of R1 and T1 provides the raw start-up signal to IC1 at CP0+.  R1 also limits 

the maximum current through T1 to ~ 0.7 A.  R3 and R4 form a voltage divider that sets the negative 

threshold level at CP0-, and draw ~ 0.3 A.  R1, R2, and C1 form an RC filter that sets the minimum dark 

pulse duration that can reach P’s CP0+ input.  R3, R5, and C2 form a second matching RC filter for the 

P’s CP0- input to help limit differential noise at the CP0- input, while also providing a bias current that 

closely matches that of the CP0+ input. 
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The values for R1, R3, and R4 have been chosen to limit the maximum current to less than 2 A under all 

lighting conditions.  In addition, the values for the RC filters have been chosen to limit the response of 

CP0+ to dark pulse durations of greater than 500 ms.  Since there is such a slow rise-time at CP0+, the 

CP0 comparator has been configured for start-up operation, as follows: 

 Positive Hysteresis: 20 mV (max available) 

 Negative Hysteresis: 20 mV (max available) 

 Response Time:     5 ms (max available) 

The output of the CP0 comparator has been configured to issue a hardware reset internal to the P 

upon a positive transition of CP0’s internal output.  The asynchronous CP0A output is connected to port 

P1.4 so that the start-up operation can be monitored and evaluated on an oscilloscope. 

2.5.1.1 Theory of Operation 

In a steady-state light condition, T1 conducts, and the voltage at CP0+ is lower than that at CP0-, and the 

internal CP0 output is held low (logic 0), and does not trigger the internal P reset.  

In a steady-state dark condition, T1 is non-conducting, and the voltage at CP0+ is higher than that at 

CP0-.  Thus, the internal CP0 output is held high (logic 1), and does not trigger the internal P reset. 

In a transition from light to a sufficient level of darkness, T1 stops conducting (its series resistance rises 

significantly) so that the voltage at R1 rises, slowly charging C1 through R1 and R2.  With a prolonged 

duration of sufficient darkness, the voltage at CP0+ eventually rises above that at CP0-, and CP0A 

transitions high, creating a positive transition that causes a hardware reset, starting up the P.  Upon a 

HW reset, the CP0 configuration is also reset such that it no longer can issue a HW reset to the P. 

In transition from dark to sufficient brightness, T1 begins conducting (its series resistance falls 

dramatically), so that the voltage at CP0+ falls below that at CP0-, and CP0A transitions to a logic 0, 

presenting a negative transition that has no impact on the P. 

Further, T1 conducts under sufficient light conditions.  When T1 is conducting, it is draining charge from 

C1 through R2.  C1 only has the opportunity to charge to a voltage level above that set by the voltage 

divider formed by R3 and R4 when T1 is prevented from conducting for a sufficient amount of time.  

Thus, CP0 only responds to dark pulses of a minimum duration (set by R1, R2, and C1), while short 

transient pulses, as well as repetitive pulses of sufficient frequency are filtered out from detection. 

A description of a typical start-up scenario of the SenseModule follows. 

1) The bowler picks up the ball.  The act of picking up the ball is sufficient to introduce enough 

light to the finger hole to cause T1 to conduct, which results in CP0 internally emitting a logic 

low.  Recall that the P does not respond to dark-to-light transitions.  

2) In preparation for delivering the ball to the lane, the bowler places his fingers in the finger 

holes, which cuts off light to T1 for a duration sufficient to charge C1 (through R1 and R2) to a 

level above that set at CP0- by R3 and R4.  This is a light-to-dark transition. 

3) As a result, CP0 transitions from low to high, which triggers the internal HW reset for the P. 
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4) While the P is in reset, it disables CP0, and applies weak logic pull-up resistors to both CP0+ 

and CP0-, all of which prevent CP0 from issuing a subsequent HW reset until it is once again 

configured for that purpose (just before the SM returns to SleepMode). 

5) The P comes out of reset and vectors to its reset code, and commences program execution. 

6) Finally, when the P is ready to shut down, it again configures CP0, allows the CP0 output to 

settle, and then enables CP0 to again detect start-up pulses.  The P then immediately enters 

its internal micro-power SleepMode. 

7) If (on the rare occasion) a valid start-up light-to-dark transition occurs and triggers CP0 

before the P has had the opportunity to enter SleepMode, the start-up circuit issues a valid 

reset pulse, and the P is once again placed in reset, and then vectors to its reset code 

(returning to step 4). 

2.5.2 Light Sensing Circuit (IC3 – TSL13) 

The ambient light sensing circuit is based on the AMS Sensing Solutions TSL13 light-to-voltage converter 

chip.  The TSL13 outputs a linear voltage in relation to the light intensity (irradiance) that falls upon it.  

The output is ratiometric to the supply voltage [26]. 

The TSL13 (IC3) is selectively powered by the P to limit power consumption.   The TSL13 is powered 

through VDD (pin 3) from P0.6 on the P, which is configured as a digital push-pull output pin.  The 

TSL13’s ground pin (GND, pin 2) is connected to battery ground.  The TSL13’s output pin (Out, pin 4) 

connects to P1.0 of the P, which is configured as an analog input pin, which the P configures as an 

ADC input or as the CP1+ input, as necessary. 

Resistors R6 and R7 form a voltage divider between the TSL13’s VDD and GND pins, while the junction 

between R6 and R7 connects to P1.1 of the P, which is configured as the CP1- input.  The R6-R7 voltage 

divider sets the threshold voltage for infrared serial light-pulse detection. 

The light sensing circuit serves dual purposes: 

1) It senses the ambient light level impinging upon the sensor module during the bowler’s 

approach, and while the ball is rolling down the lane.  In this case, P1.0 of the P (to which the 

output of the TSL13 is connected) is configured as an ADC input channel. 

2) It detects optical-based serial data transmissions to the SenseModule.  In this case, P1.0 of the 

P is configured as the positive input (CP1+) to its onboard CP1 comparator. 

2.5.2.1 Sensing Mode 

When the SenseModule is sensing ambient light, the P periodically measures the ambient light level 

impinging upon the module.  The P configures P1.0 as the ADC input for the TSL13, applies power to 

the TSL13 through P0.6 (outputting a logic 1 at P0.6), waits an appropriate amount of time for the TSL13 

to stabilize (100 s), and then initiates an ADC sample of the TSL13’s output pin.  After the P’s internal 

ADC circuitry signals that it has completed the sample conversion, the P removes power from the 

TSL13 by setting P0.6 to logic 0. 
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The P “sees” the moment the bowler releases the ball by detecting the dark-to-light transition as the 

bowler’s finger leaves the finger insert.  While the ball is rolling, the P periodically samples the ambient 

light sensor output and stores those samples in the FC1025 EEPROM, using a method and hardware 

similar to that used to capture the light waveforms in the original SMARTDOT sensor module. 

2.5.2.2 Communications Mode 

While the sensor module is in communications mode, the P provides constant power to the TSL13 

through P0.6.  The P configures P1.0 as the positive input (CP1+) and P1.1 as the negative input (CP1-) 

for its onboard CP1 comparator.  When the voltage from the TSL13 at the CP1+ pin exceeds that 

determined by the R6-R7 voltage divider connected to the CP1- pin, CP1 outputs a logic 1 internal to the 

P.  When the voltage at the CP1+ pin falls below the threshold set by R6-R7, CP1 outputs a logic 0 

internal to the P.  The SenseModule embedded software then interprets the internal CP1 output to 

emulate a serial receiver. 

The transmitter is a visible/infrared LED driven by the P’s programmable constant current source 

(IREF0), and is connected to the P via P0.7.  IREF0 is configured to drive the transmit LED with 500 A.  

To further limit the LED current during transmission, an inverted return-to-zero (iRTZ) scheme is used for 

serial transmission, similar to the IRDA standard, where serial ‘0’ bits will be transmitted as short light 

pulses (≤ 50% duty cycle), while serial ‘1’ bits are represented by the interstitial dark times. 

2.5.3 Accelerometer circuit (IC4 – ADXL345) 

The accelerometer circuit is based on the Analog Devices ADXL345 3-axis accelerometer chip.  From the 

ADI data sheet [25], 

“The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution (13-

bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos 

complement and is accessible through either a SPI (3- or 4-wire) or I2C digital interface. 

The ADXL345 is well suited for mobile device applications. It measures the static 

acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration 

resulting from motion or shock. Its high resolution (4 mg/LSB) enables measurement of 

inclination changes less than 1.0°.” 

The P can place the ADXL345 (IC4) in a micro-power standby mode through commands issued via the 

I2C interface, thus VDD (pin 1) of the ADXL345 is always connected to the battery.  The hardware chip 

select (  ̅̅̅̅ ) pin is pulled to a logic ‘1’, while the analog supply (VS) is connected to the battery via a 

separate line than the digital logic.  The ground pins (pins 2, 4, 5, 10, 11), plus ALTADDR (pin 12), are 

connected to battery ground.  

All chip configuration and data retrieval operations are performed via the I2C interface (SDA and SCL).  

The two configurable interrupt pins (INT1 and INT2) are connected to the P’s P0.5 and P0.4 port pins, 

respectively.  Those port pins are then configured as external interrupts for the P. 

The ADXL345 is the primary sensor for the SenseModule.  The ADXL345 measures both the static force 

due to gravity (3-axis tilt sensor), as well as the dynamic forces exerted upon the chip.  Thus, the 
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ADXL345 can detect the orientation of the SM with respect to the vertical acceleration due to gravity, as 

well as the instantaneous centripetal acceleration generated by the angular velocity (rotation) of the 

ball, along with any impacts and vibration the ball experiences.  Digital signal processing (DSP) 

techniques are then used to separate those components into their constituent parts.  

The ADXL345 is situated on the SM PCB in such a way that the X and Y axes are oriented tangentially to 

the ball’s surface, so that they respond primarily to the tilt of the module relative to gravity and less so 

to the centripetal acceleration of the ball.  The Z axis is oriented in line with the radius of the ball, and 

responds more strongly to the centripetal acceleration than the X and Y axes.  The ADXL345 provides the 

raw 3-axis accelerometer data necessary for determining the motion of the ball during the bowler’s 

approach and delivery, the forces the bowler applies to the ball during the release motion, and the 

reaction of the ball as it rolls down the lane.  It also detects the ball’s impact with the lane, and 

ultimately with the pins. 

The P configures the ADXL345 to run autonomously, collect 3-axis accelerometer samples at 200 HZ, 

store those samples in its internal sample buffer, and issue an interrupt when the sample buffer reaches 

25 samples.  Thus, the P can be put into a low-power idle mode while the ADXL345 fills up its sample 

buffer.  With the ADXL345 configured as described, it nominally draws 350 A while collecting samples, 

and much less than 1 A while in standby mode. 

2.5.4 Microprocessor (IC1 – 8051F921) 

The 8051F921 microprocessor (P) is always powered, but spends most of its time in a micro-power 

sleep mode.  While in sleep mode, only two functions are powered: the CP0 comparator, which is 

connected to the start-up circuit, and the smaRTClock, which keeps track of the date and time-of-day.  

CP0 is configured to issue a reset to the P, which causes the P to execute its internal self-

configuration routine before beginning program execution at the reset vector.  At that point, the 

embedded software takes over and further configures the P as needed for the SenseModule 

application.  After the SM has concluded processing the event that woke it up, it shuts down all 

unnecessary functions and returns to sleep mode, awaiting the next wake-up event. 

The 8051F921 is a highly configurable system-on-a-chip.  The basic configuration parameters for the 

various microprocessor functions that the SM utilizes are presented below [23]. 

2.5.5 System Clock 

The 8051F921 P has an onboard system oscillator, which is factory programmed for 24.5 MHz  2%.  

The system clock can be configured for slower clock rates (divide by 2, 4, or 8).    Since the SenseModule 

application requires low power consumption, the system clock is configured for the minimum clock rate: 

24.5 MHz / 8 = 3.05 MHz.  In addition, the clock rate can be changed on-the-fly.  If additional processing 

speed is necessary, the system clock frequency can be temporarily increased, as needed. 

2.5.6 Low Power Modes 

The P has several low-power modes that can be used to significantly reduce power consumption.  The 

P’s internal sleep mode allows it to remain powered, while shutting off current to all peripherals 

except for the low-power comparators and the smaRTClock.  In that configuration, the P draws ~1 A.  
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The P can resume processing from sleep mode based a number of configurable events.  In this 

application, those events are the CP0 comparator output, and the smaRTClock functions. 

The P also has an internal idle mode that allows the timers, comparators, and ADC to run, while 

shutting off any unnecessary circuitry.  The P can resume processing from idle mode, based on any 

interrupt.  Idle mode is used to significantly reduce current consumption during sampling. 

2.5.7 Real Time Clock (RTC) 

The P has an on-board micro-power real time clock (smaRTClock) that is used to track chronological 

time, as well as provide correlated time-stamps for the ambient light and acceleration samples.  The RTC 

function is always enabled, and allows the SenseModule to keep track of the date and time-of-day, even 

when the SM is in sleep mode.  A 32.768 kHz crystal oscillator is used to drive the smaRTClock. 

2.5.8 Port Pins 

Another key feature of the P is the ability to assign selected peripheral functions to specific port pins, 

as needed.  This capability facilitates optimal use of port pins, as well as helps optimize PCB layout. 

2.5.9 Comparators 

The P has two highly-configurable, on-board, low-power analog comparators (CP0 and CP1).  

Comparator CP0 serves as part of the start-up detection circuit, while CP1 is the serial reception edge 

detector for the software UART. 

2.5.10 Analog-to-Digital Converter (ADC0) 

The P has a highly configurable, on-board 300 Ksps 10-bit analog-to-digital converter (ADC0) that 

accepts signals from a 13-channel analog multiplexer.  ADC0 is used to sample the ambient light 

waveform at the output of the TSL13 light-to-voltage converter. 

2.5.11 I2C Bus 

There is byte-wide I2C bus function built into the P.  The I2C bus function is used to interface with the 

ADXL345 accelerometer and the 24FC1025 serial EEPROM. 

2.5.12 Timers 

There are 4 timers available for assignment to a variety of functions.  The I2C bus requires a timer, as 

does the ambient light sampling timer and the ADC0 converter.  In addition, the serial communications 

interface utilizes a timer, although serial communications never run in conjunction with sampling. 

2.5.13 Interrupts 

The P has an extensive two-level prioritized interrupt system.  The UART bit-slice timer, the ADC0 

sample timer and ADC0 conversions, the I2C bus, the comparators, the Port 0 pins connected to the 

ADXL345 interrupt pins, and the smaRTClock all issue interrupts that are utilized in this application. 

2.6 EEPROM (IC2 – 24FC1025) 
The 24FC1025 EEPROM has a capacity of 128 Kbytes, arranged as 1024 pages containing 128 bytes a 

page.  The EEPROM has a 128-byte write buffer that allows full page writes to be received in one I2C 

transaction, and committed to memory in a single write cycle.  It also has a maximum write time of 5 
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ms, for any single write transaction, including writing an entire 128-byte page.  As with the P, the 

24FC1025 I2C serial EEPROM chip is always powered, but draws negligible current when not being 

accessed and not committing data to memory from its write buffer [24]. 

Although the page writing capability is 5 ms, it takes longer than that (~7 ms) to transfer 128 bytes to 

the EEPROM’s write buffer via the I2C bus.  Thus, it takes ~12 ms to transfer and write a page to 

EEPROM, and ~7 ms to read a page from EEPROM (or the ADXL345).  The page writing capability of the 

EEPROM is heavily leveraged to take advantage of the faster overall data transfer rates, as well as to 

limit the amount of time the EEPROM spends committing data to memory.  The EEPROM draws ~250 A 

during reads and ~2 mA while committing data to memory.  During sampling, the SenseModule writes 9 

sample pages to EEPROM per second.  By limiting the number of individual reads and writes to just 

those 9 pages, the active duty cycle of the EEPROM has been reduced to about 10%, resulting in an 

average current draw of about 115 A, while sampling.  

The EEPROM goes “silent” when it is in the process of committing its write buffer to memory.  The SM 

uses that characteristic to find out when the EEPROM is ready to process the next transaction.  If the 

EEPROM does not respond to a request, the SM software has a retry function that it executes the next 

time through its event processing loop.  Thus, during sampling, there is no waiting on the EEPROM to 

finish committing a page to memory.  
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Section III: SenseModule Embedded Software 

The SenseModule operation is intended to be fully autonomous.  The SM should automatically turn itself 

on and off, without requiring the bowler to alter their normal routine in any way.  Whenever the bowler 

rolls the ball down the lane, the SM should automatically record what it “sees” through its ambient light 

sensor (TSL13), and what it “feels” through its 3-axis acceleration sensor (ADXL345).  Sometime after the 

SM has recorded the data, the bowler places the ComModule over the finger hole that holds the SM, at 

which point the SM should automatically detect the presence of the CM, and upload the recorded 

sensor data to the CM. 

3.1 SenseModule Use Cases 
Given the above requirements, there are three basic scenarios (use cases) to which the SenseModule 

must respond: 

1) Recording sensor data: The bowler picks up the ball from the ball return, and places their 

fingers in the ball, which automatically wakes up the SenseModule from SleepMode.  The SM 

detects a recordable event, and records sensor readings, from the time the bowler starts their 

approach, releases the ball, and delivers it to the lane, through the time the ball takes to 

traverse the lane, hit the pins, and fall into the pit at the back end of the lane.  At that point, the 

SM automatically shuts down, and returns to SleepMode. 

2) Uploading sensor data: At some later time, the bowler uploads the collected sensor data to the 

ComModule by placing the CM over the finger hole in which the SM is located.  The SM and CM 

automatically detect each other’s presence, and the SM switches to CommandMode.  The CM 

issues a sequence of commands in order to retrieve the sensor data from the SM, and the SM 

uploads the sensor data under control of the CM.  The SM automatically shuts down at the end 

of the command sequence, returning to SleepMode. 

3) Rejecting false wakeup conditions: The bowler rolls the ball down the lane, and it reaches the 

end of the lane and falls into the pit.  The SM automatically returns to SleepMode after having 

recorded its sensor data.  The pinsetter picks up the ball and sends it back to the ball return.  

The ball emerges from the pinsetter into the light, just before rolling down the return ramp into 

the “subway.”  The light-to-dark transition that results is sufficient to wake the SM.  Further 

complicating matters, the ball is rolling, appearing to the SM as if the bowler has again rolled the 

ball.  The SM should automatically reject this event, and any other wake-up event that is not the 

result of the first two use cases. 

3.2 Software Requirements 
The above use cases impose a certain minimum set of required features and functions upon the 

SenseModule embedded software.  There are additional requirements that must also be incorporated in 

order to make the REVMETRIX system easy and convenient to use. 

3.2.1 Module Configuration 

Since the SenseModule is still in development, optimal values for various light levels, release and 

shutdown detection algorithm parameters, time out values, etc. have yet to be determined.  It is not yet 
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known whether a single set of parameters will be applicable across the various bowling styles.  Thus, 

many of the parameters used by the SM should be configurable – stored in, and retrieved from 

EEPROM, as needed. 

In addition, there is also a need for a unique module identifier, as well as a method for associating a 

particular SM with the ball in which it is installed.  Password protection should also be implemented to 

discourage theft of the device and/or the bowling ball in which the SM is installed. 

3.2.2 Power Management 

The SenseModule has severe constraints on its battery capacity.  The SM software should manage its 

internal and external hardware resources, as well as its overall run time to minimize current 

consumption.  Such a strategy will both limit the required capacity of the battery (thus its size and 

weight), as well as extend the interval between battery replacements.  Implementing that strategy 

involves a multifold approach: 

1) Limit the system clock speed, and the time the P spends operating at that clock speed. 

2) Maximize the time the P spends in low-power modes, such as SleepMode and IdleMode. 

3) Selectively enable internal hardware functions (timers, ADC, I2C bus) only when needed. 

4) Selectively enable external peripherals (ADXL345, TSL13) only when needed. 

5) Limit transactions on the I2C bus: reads of the ADXL345, and reads/writes of the EEPROM. 

6) Use time out intervals when waiting for events, e.g., valid wake-up, release, sampling, etc. 

7) Limit the LED transmission current during serial communication. 

3.2.3 Time Measurement 

The SenseModule has several requirements for time measurement.  It must have a stable MHz-level 

system clock.  It must also sample the ambient light level (TSL13 output) at regular intervals.  Even 

though the ADXL345 provides its own sample clock, the SM must be able to provide correlated time 

stamps between the light samples and the acceleration samples.  The SM must also be able to keep 

track of chronological time so that the bowler can later associate the data captured in the SM memory 

with the dates and places of the captured data. 

The SM uses a 3.05 MHz system clock derived from the P’s on-board 24.5 MHz oscillator.  That system 

clock is accurate enough for clocking the P and the various internal timers that are used for light 

sampling, serial communications, and the I2C bus timing.  The P also provides an internal smaRTClock 

function that is used to implement a micro-power real time clock (RTC) when driven by a 32.768 kHz 

watch crystal.  The RTC has a greater overall accuracy than the built-in system clock oscillator, so it is 

also used to provide a correlated time-stamp for the light and acceleration readings. 

3.2.4 Ball Record Database (EEPROM) 

It would be highly inconvenient and intrusive upon the bowler’s normal routine if they were required to 

upload the sensor data after every roll of the ball.  Thus, the SenseModule must be able to store sensor 

data resulting from multiple rolls of the ball.  At a minimum, the bowler should not have to upload data 

from the SM more frequently than once per game. 
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3.2.5 Command Processing 

The SenseModule uploads the data it collects to the ComModule via a serial infrared UART.  A command 

protocol and series of commands are required that allow the CM to configure the SM, as well as 

interrogate it, and retrieve data from it.  Since all non-volatile configuration and sensor data is stored in 

the SM’s EEPROM, two commands are required, at a minimum: 

1) Write EEPROM Page 

2) Read EEPROM Page 

With the above two commands, the CM could read or write any combination of bytes in the SM by 

reading a page, modifying only the necessary bytes in that page, and then writing the modified page 

back to EEPROM.  Other commands could be provided for the ease of interacting with the SM. 

3.2.6 Infrared Serial UART (iRTZ Format) 

The SenseModule communicates with the ComModule via an infrared serial interface using an inverted 

Return-To-Zero (iRTZ) format in order to limit the LED transmission current.  Although the P has an on-

board serial UART, it is not configurable for the required iRTZ format.  Thus, the iRTZ UART must be 

implemented in software. 

3.2.7 Sensor Sampling 

The main function of the SenseModule is to capture and store the raw data waveforms generated by the 

light sensor (TSL13) and the 3-axis accelerometer (ADLX345).  Sufficient sampling rates are required that 

allow accurate reproduction of the captured waveforms, while still keeping the sample rate at a 

minimum in order to maximize the number of individual frames that the SM can store in its EEPROM, by 

limiting the amount of data collected per frame. 

Due to the interrupt-driven nature of the sampling process, there are several data buffering techniques 

that should be utilized.  Interrupts should be short-lived (quick), implementing just enough processing to 

retrieve the sample and place it in a buffer for event processing after return from the interrupt. 

3.2.8 Sample Storage 

3.2.8.1 Light Samples Buffer 

Light samples are collected at a 240 Hz rate, and then averaged together to create a single 120 Hz 

reading.  This averaging schemes filters out the 120 Hz “noise” imposed on the light waveform by the 

overhead fluorescent lighting found in most bowling establishments.  To limit the amount of time that 

the P is awake to collect and process light samples, the ADC0 interrupt should buffer a certain quantity 

of 120 Hz light samples before notifying event processing that new light samples are available. 

3.2.8.2 ADXL Sample Buffer 

A single 3-axis sample collected by the ADXL345 consists of 6 total bytes, 13 bits per axis, left-justified 

into a 16-bit word for each axis.  The SMBUS0 interrupt reads the ADXL345 via the I2C connection, and 

should assemble and store the 6-byte sample in its own buffer, until such time as the complete sample 

has been read, at which point it should copy the contents to a separate buffer for event processing to 
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handle.  Thus, the interrupt can return to receiving the next sample without the possibility of 

overwriting the previous sample before event processing has a chance to execute. 

3.2.8.3 Light Page Circular Buffer and ADXL Page Circular Buffer 

During the bowler’s approach, while the SenseModule is waiting for release, it must capture and store 

sensor data while it is also detecting the release condition from that sensor data.  Only the most recent 

few seconds of data immediately preceding the release event must be stored in EEPROM; the rest can 

be discarded.  The best way to do this is to implement circular buffers for both the light and 

accelerometer readings. 

The interrupts capture and buffer the data, and event processing periodically transfers the buffer 

contents to the appropriate circular buffers.  When the SM detects the release event, it can then start 

writing to the EEPROM from the current contents of the circular buffers.  

3.2.9 Wakeup Validation 

Whenever the SenseModule wakes up, it must first discriminate between the three given use cases, and 

determine which of them to follow.  The SM’s first task is to detect a valid wake-up condition, and then 

detect the presence (or absence) of the ComModule, before moving on to considering recording sensor 

data. 

A valid wake-up condition only occurs under extended dark conditions – either the bowler’s finger is in 

the ball, or the CM is covering the finger hole.  Thus if the SM “sees” too much light to soon after waking 

up, it should reject the wake-up condition as invalid, and immediately return to SleepMode. 

Communication with the CM requires a very dark background light level.  While the SM is validating the 

wake-up light level, it should also check for a level conducive to communication with the CM.  If the light 

level immediately after waking up is sufficiently dark for communication, then the SM should first 

attempt to initiate contact with the CM.  Only after contact with the CM cannot be established, should 

the SM proceed to sampling and recording data. 

3.2.10 Approach and Release Detection 

The SenseModule should not only capture the bowler’s release of the ball and what follows afterwards, 

it should capture the motion of the ball during the bowler’s approach leading up to release.  However, 

only the last several seconds immediately preceding release are of interest.  Thus, the SM should have a 

“pre-trigger” function that constantly samples the light and ADXL waveforms leading up to release (the 

“trigger”), but only retain the most recent few seconds of captured sensor data. 

A release detection algorithm is required that can detect the bowler’s release of the ball, and discern 

between an actual release event, and similar looking events, such as the ball emerging from the 

pinsetter on it is way to the ball return, and the ball emerging from the ball return itself.  Both of those 

instances involve a dark-to-light transition, coincident with rotation of the ball. 

In addition, there are wake-up events where the release condition will not occur.  The SM should have a 

time out function associated with release detection, to limit the time it remains awake, waiting for 
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release.  If the time out expires before a release condition is detected, the SM should automatically shut 

down and return to SleepMode. 

3.2.11 Shutdown Detection 

The SenseModule has severe constraints on data storage, as well as battery capacity.  The SM should 

record data only up to the point that the ball has passed through the pins and fallen into the pit.  

Afterwards, it should automatically shut down operation and return to SleepMode. 

A shutdown detection algorithm is required that quickly and reliably detects when the ball has ceased 

rolling.  This routine should also be robust enough to discern the difference between the ball rolling 

down the lane, and the ball rotating while it is being sent back to the ball return. 

As a “fail-safe” for shutdown detection, there should also be a shutdown time out function that halts 

sampling after a specified maximum time spent sampling data has expired. 

3.3 EEPROM Memory Map 
The SenseModule accumulates its sensor readings in external EEPROM.  The EEPROM contents are 

divided into 128-byte pages (which is also the buffer size for write operations to the EEPROM).  The 

EEPROM capacity is 1024 pages of 128 bytes each, for a total of 128 Kbytes.  For this application, all 

reads from and writes to EEPROM are conducted a page (128 bytes) at a time, starting on an EEPROM 

page boundary. 

The EEPROM is logically divided into three sections (3.3.1): 

1) Configuration Page (page 0) 

2) Ball Pointer Page (page 1) 

3) Ball Record Array (pages 2 – 1023) 

Page 0 of the EEPROM is the SM’s Configuration Page, which holds all of the configuration data and 

operational and system parameters for the SM (3.3.2). 

Page 1 of the EEPROM is the Ball Pointer Page, which consists of an array of pointers to the first page of 

each Ball Record stored in EEPROM (3.3.3). 

Pages 2 through 1023 hold the Ball Record array.  Each Ball Record consists of a Ball Page, and a variable 

length collection of Light Pages and ADXL Pages that contain the captured sensor data for that particular 

Ball Record (3.3.5).  The pages for each Ball Record are stored contiguously, with the Ball Page first 

(3.3.6), followed by a mix of Light Pages (3.3.7) and ADXL Pages (3.3.8).  The Ball Page holds the header 

information for the Ball record.  It also doubles as the first Light Page, with the bytes remaining after the 

header information being filled with Light samples.  The Light Pages are stored in chronological order, as 

are the ADXL Pages, but there is no guarantee that the entire collection of the Ball Page, the Light Pages, 

and the ADXL Pages are all stored in chronological order with respect to each other. 

The Ball Record array located in the EEPROM is organized as one large circular buffer.  It spans 1022 

pages, from EEPROM page 2 to EEPROM page 1023.  The pages of a new Ball Record are written 
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contiguously to the EEPROM, overwriting the existing contents.  When EEPROM page 1023 is written, 

the Configuration Page (page 0), and the Ball Pointer Page (page 1) are skipped over, and the next 

available sample page is page 2. 

Before the SM begins committing a new Ball Record to EEPROM, it first retrieves the location of the next 

Ball Pointer entry to use (nextBall) , and the location of the next available sample page in the Ball Record 

array (nextBallPage). 

At the conclusion of committing a new Ball Record to EEPROM, the Ball Pointer page is updated with the 

location of the Ball Page from the new Ball Record, and nextBall and nextBallPage are updated in the 

Configuration Page to point to the next available Ball Pointer and Ball Page respectively.  The SM 

conducts a scan of the Ball Pointer array to verify which Ball Records are still valid, and which ones had 

at least one page that was overwritten.  Any such records are marked as deleted in the Ball Pointer 

array, thus maintaining the integrity of the Ball Record database.  See Figure 5 for a graphical depiction 

of the EEPROM memory map. 

3.3.1 EEPROM Layout 

The EEPROM is divided into 1024 physical pages of 128 bytes each.  It is possible to access individual 

bytes of the EEPROM.  However, in this application, it is more efficient to access a page at a time.  Each 

page written to EEPROM has a Page Type associated with it, as the first byte of the page.  The 

SenseModule can quickly identify the format of each page it reads from EEPROM by the Page Type. 

Table 1: EEPROM Map 

EEPROM MAP (128 Kbytes – 1024 128 byte pages) 

Addr: 0:0000 Addr: 0:0080 Addr: 0:0100 

CONFIGURATION PAGE BALL POINTER PAGE BALL RECORD ARRAY 

(Section 3.3.2)  (Section 3.3.3) 14 min @ 9344 bytes 
32 max @ 4096 bytes 

1 page (128 bytes) 1 page (128 bytes) 14-32 Ball Records (1022 pages) 

The Configuration Page and Ball Pointer Pages are described below.  The Ball Record Array is arranged as 

a circular buffer that contains the variable length Ball Records (3.3.5) associated with the Ball Record 

Pointers (3.3.4).  
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SenseModule Serial EEPROM Layout

The SenseModule serial EEPROM is configured as 1024 separately addressable 128-byte pages. Even 

though each byte is individually addressable, the SenseModule always buffers EEPROM reads and writes 

on a page basis to limit I
2
C transactions, and the EEPROM write penalty (5 ms, 2 mA).  The EEPROM is 

divided into 3 basic pieces:  the Configuration Page, the Ball Pointer Page, and the Ball Record Array.

Ball Record

SenseModule Configuration Page
(EEPROM Page 0)

Holds all SenseModule configuration and 

system parameters and database pointers.

Next Ball
(Page 0, Byte 28h)

Next available pointer in 

the Ball Pointer Page.

Next Ball Page

(Page 0, Byte 29h)

Next available page in the 

Ball Record Array.

Ball Pointer Page

(EEPROM Page 1)

Array of 62 Ball Record Pointers 

that point to the Ball Page of each 

stored Ball Record.

Ball Record Array
(EEPROM Pages 2-1023)

Holds from 14-32 variable-length Ball 

Records.

Ball Page
First page of Ball Record 

(doubles as first Light 

Page).  Stores RTC date 

and time of begin/end of 

sampling, # of Light Pages, 

# of ADXL Pages, and first 

106 Light Samples.

Light Pages
Up to 7 additional Light 

Pages, each holding 120 8-

bit light samples, along with 

RTC time stamp of the first 

sample of the page.  

Stored chronologically, 

relative to each other.

Ball Record Pointer
Points to the first page of a 

Ball Record.

ADXL Pages
Up to 64 ADXL Pages, 

each holding 25 3-axis 

ADXL samples (5-bytes 

each), along with RTC time 

stamp of the first sample.  

Stored chronologically, 

relative to each other.

Ball Record
Composed of a Ball Page, and a variable 

length collection of Light and ADXL Pages, 

allowing for up to 8 seconds of sampling 

time per ball.

 

 

Figure 5: SenseModule Serial EEPROM Memory Map
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3.3.2 Configuration Page 

The Configuration Page holds the following configuration, system, and operational parameters.  It is 

protected by a 16-bit CRC in order to detect corruption of the Configuration Page contents. 

Table 2: Configuration Page Contents 

PAGE 0 ADDRESS: 0:0000 CONFIGURATION PAGE (CONFIGPAGE) 
0:0000 BYTE Page Type: 0x20 

0:0001 WORD SW Version: loaded by firmware 

0:0003 WORD DB Version: loaded by firmware 

0:0005 CHAR[10] Ball Name: set by user 

0:000F WORD Module ID: unique for this module (CRC from Ball Name) 

0:0011 WORD Module Password: supplied by user from ComModule 

0:0013 DWORD Time Base: set by ComModule after each command (time_t) 

0:0017 WORD  Recording Mode: 0: Off (does not record, only responds to ComModule) 
 1: Single (records one Ball Record at a  time) 
 2: Full (records until full, does not overwrite new Ball Records) 
 3: Automatic (always records – overwrites oldest Ball Records) 

0:0019 BYTE Light Buffer Pages: # of Light pages in Approach Buffer 

0:001A BYTE ADXL Buffer Pages: # of ADXL pages in Approach Buffer 

0:001B BYTE Max Sample Time: max # of seconds to sample 

0:001C BYTE Light Release Threshold: min TSL13 values to detect release 

0:001D BYTE ADXL Release Threshold: min ADXL Z-axis value to detect release 
0:001E BYTE Light Sample Threshold: min Light value to continue sampling 

0:001F BYTE ADXL Sample Threshold: min ADXL Z-axis value to continue sampling 

0:0020 BYTE ADXL Impact Threshold: min X, Y-axis values to detect impact 

0:0021 WORD Ball Count: total # of Ball Records created, rolls over at 65535 (16-bits) 

0:0023 WORD Deleted Ball Count: # of new Ball Records overwritten since count was last reset 

0:0025 BYTE New Ball Count: # of new Ball Records in DB 

0:0026 BYTE First New Ball: oldest new Ball  Record in DB 

0:0027 BYTE Newest Ball: most recent new Ball Record in DB (last ball pointer used) 

0:0028 BYTE Next Ball: next available Ball Record in DB (next ball pointer to be used) 

0:0029 WORD Next Ball Page: next available Ball Page in DB ( where next Ball Record is written) 

0:002B BYTE Transmit Retry Count: # of retries during last download (for troubleshooting 
communications) 

0:002C WORD Transmit Retry Page: first page that had to be retried (for troubleshooting 
communications) 

0:002E BYTE Reset Reason: reason code for last EEPROM initialization 

0:002F WORD System Clock adjustment: set by factory, and adjustable by ComModule 
0:0031 WORD Baud rate adjustment: set by factory, and adjustable by ComModule 

0:0033 BYTE RCV baud rate (28800, 57600, 1152000) 

0:0034 BYTE TRX baud rate (28800, 57600, 115200, 230400) 

0:0035 BYTE ADXL Sample Frequency (100 Hz, 200 Hz, 400 Hz, 800 Hz) 

0:0036 BYTE TSL13 Sample Frequency (120 Hz, 240 Hz) 

0:0037 BYTE Inactivity time: sleep if inactive for at least this long 

0:0038 BYTE Inactivity Threshold: (x-axis, y-axis, z-axis), register inactivity when all axes are below 
this threshold 

0:0039 BYTE[69] unused 

0:007E WORD CRC (16 bits) 
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3.3.3 Ball Pointer Page 

The Ball Pointer page contains an array of 62 pointers to Ball Records.  Each Ball Record Pointer contains 

the EEPROM page address where the first page (Ball Page) of its corresponding Ball Record is located.  

Since Ball Records are variable length, and the Ball Record array is designed as a circular buffer, Ball 

Record Pointers are neither positional nor absolute, i.e., Ball Record Pointer 0 does not point to Ball 

Record 0.  Rather, Ball Records are cumulative over the life of the SenseModule.  After the Ball Record 

array is full, each new Ball Record overwrites the oldest Ball Record in the array due to the circular 

nature of the array.  The Ball Record number is stored in the Ball Page of the record as Ball Count.  The 

Configuration Page stores the locations of the oldest unread Ball Record, the newest Ball Record, and 

the next Ball Record Pointer and EEPROM page to use.  The Ball Pointer Page is protected by a 16-bit 

CRC to detect corruption of the Ball Record Pointer array.  Although the Ball Pointer Page holds 62 Ball 

Record Pointers, the current size of the EEPROM limits storage to a maximum of 32 Ball Records.  A 

future incarnation of the SM, with an additional EEPROM chip, could hold up to 62 Ball Records. 

Table 3: Ball Pointer Page Structure 

BALL POINTER PAGE (EEPROM Page 1, Address: 0:0080, 128 bytes) 

0 1 2-125 126-127 

PAGE TYPE UNUSED BALL RECORD POINTER ARRAY (0-61) PAGE CRC 

0x30  see below 16-bits 

BYTE BYTE WORD[62] WORD 

3.3.4 Ball Record Pointer 

Each Ball Record Pointer maintains the following status bits.  The “In Use” bit indicates that the pointer 

currently points to a valid Ball Record.  The “New” bit indicates that the Ball Record has not yet been 

uploaded.  The “Deleted” bit indicates that the Ball Record associated with this pointer has been 

overwritten, and is no longer valid.  The lower order 11 bits contain the EEPROM page address of the 

associated Ball Record. 

Table 4: Ball Record Pointer Structure 

BALL RECORD POINTER (2 bytes) 

15 14 13 12 11 10 - 0 

BALL STATUS BITS BALL RECORD POINTER 

IN USE NEW DELETED  
unused 

 
unused 

EEPROM PAGE 

1: In Use 
0: Available 

1: New 
0: Old 

1: Deleted 
0: Not Deleted 

2 - 1023 

WORD 
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3.3.5 Ball Record 

Ball Records are variable length, and consist of a Ball Page (as the first page), and a mix of up to 7 Light 

Pages, and up to 64 ADXL Pages, based on the maximum sampling time set in the Configuration Page.  

The Ball Page also doubles as the first Light Page.  The Light Pages are stored in chronological order 

relative to each other, and the ADXL Pages are also stored in chronological order relative to each other, 

but there is no guarantee that the entire collection of Ball Page, Light Pages, and ADXL Pages are all 

stored in chronological order with respect to each other. 

Table 5: Ball Record Structure 

BALL RECORD (9216 bytes max: 72 sample pages * 128 byes) 

0 1-71 (max) 

BALL PAGE SAMPLE PAGES 

Doubles as first Light Page (106 samples, 883 ms) 
(Section 3.3.6) 

Mix of 
1–7 Light Pages (Section 3.3.7), up to 7 seconds 

and 
1-64 ADXL Pages (Section 3.3.8), up to 8 seconds 

1 EEPROM page (128 byes) Up to 71 EEPROM pages (9088 BYTES max) 
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3.3.6 Ball Page 

The first page of a Ball Record is always a Ball Page.  The Ball Page also doubles as the first Light Page, but has a lower sample capacity than the 

Light Pages, since it also holds the header data for the Ball Record. 

Table 6: Ball Page Structure 

BALL PAGE (128 bytes) 

0 1-4 5-6 7 8-11 12-15 16-19 20 21 22-127 

BALL PAGE 

HEADER 
PAGE  TIME 

STAMP 
 

BALL 

COUNT 
SAMPLE 

COUNT 
 

BALL TIME 

STAMP 
 

START TIME 

STAMP 
END TIME 

STAMP 
 

LIGHT PAGES 
 

ADXL PAGES 
 

LIGHT 

SAMPLES 

ARRAY 

see 
below 

RTC time @ 
start of 

page 

 # of samples 
stored in 

page 

RTC date @ 
start of 

sampling 

RTC time @ 
start of 

sampling 

RTC time @ 
end of 

sampling 

# of Light 
pages in Ball 

Record 
(range: 1-8) 

# of ADXL 
pages in Ball 

Record 
(range: 1-64) 

8-bit 
Samples 
0 – 105 

(833 ms) 

BYTE DWORD WORD BYTE DWORD DWORD DWORD BYTE BYTE BYTE[106] 

Each Ball Page Header points back to its Ball Record Pointer in the Ball Pointer Page. 

Table 7: Ball Page Header Structure 

BALL PAGE HEADER (byte 0 of Ball Page) 

7 6 5 4 3 2 1 0 

PAGE TYPE BITS BALL RECORD # 

1 1 0 - 61 

Ball Page Type = 11xxxxxxb Ball index from Ball Pointer Page 

BYTE 
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3.3.7 Light Page 

Each Light Page can store up to 120 8-bit ambient light samples (1 second of data) collected from the 

TSL13 Light-to-Voltage converter.  All Light Pages hold the full 120 samples, with the exception of the 

last Light Page, which may hold less, depending on when waveform sampling was terminated.  Each 

Light Page also stores the RTC time stamp at the time the first sample was collected for that page. 

Table 8: Light Page Structure 

LIGHT PAGE (128 bytes) 

0 1-4 5-6 7 8-127 

LIGHT PAGE 

HEADER 
PAGE TIME STAMP BALL 

COUNT 
SAMPLE COUNT LIGHT SAMPLES 

ARRAY 

see below 
 

RTC time @ start of 
page 

 # of samples stored in 
page 

8-bit Samples 
0 – 119 

(1 second) 

BYTE DWORD WORD BYTE BYTE[120] 

Each Light Page Header points back to its Ball Record Pointer in the Ball Pointer Page. 

Table 9: Light Page Header Structure 

LIGHT PAGE HEADER 

7 6 5 4 3 2 1 0 

PAGE TYPE BITS BALL RECORD # 

1 0 0 - 61 

Light Page Type = 10xxxxxxb Ball index from Ball 
Pointer Page 

BYTE 
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3.3.8 ADXL Page 

Each ADXL Page can store 25 5-byte compressed 3-axis acceleration readings (125 ms) collected from 

the ADXL345 3-axis accelerometer.  All ADXL Pages hold the full 25 samples, since sampling always stops 

at the end of an ADXL Page.  Each ADXL Page also stores the low-order word of the RTC time stamp at 

the time the first ADXL sample was collected for that page. 

Table 10: ADXL Page Structure 

ADXL PAGE (128 bytes) 

0 1-2 3 - 127 

ADXL  PAGE 

HEADER 
PAGE TIME STAMP ADXL SAMPLES ARRAY 

see below RTC time @ start of page (low-order WORD 
only) 

Compressed 13-bit X,Y,Z-axis 
samples 
0 – 24 

(125 ms) 
see below 

BYTE WORD ADXL Sample[25] 

Each ADXL Page Header points back to its Ball Record Pointer in the Ball Pointer Page. 

Table 11: ADXL Page Header Structure 

ADXL PAGE HEADER 

7 6 5 4 3 2 1 0 

PAGE TYPE BITS BALL RECORD # 

0 1 0 – 61 

ADXL Page Type – 01xxxxxxb Ball index from Ball Pointer Page 

BYTE 
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3.3.9 ADXL Sample 

The ADXL Samples that are stored in an ADXL Page are compressed versions of the 6-byte samples that 

are retrieved from the ADXL345.  Each axis reading is 13-bits, originally left-justified into a 16-bit value.  

The most significant 13-bits of each axis reading are compressed into a 5-byte sample, before being 

copied to the ADXL Page.  The X-, Y-, and Z-axis most significant bytes (MSBs) are kept intact so that 

those values can be easily isolated and tested during sampling.  Their respective least significant bytes 

(LSBs) are compressed into the remaining 2 bytes, as shown.  Essentially, the Z-axis LSB bits are allocated 

to the unused X-axis and Y-axis LSB bits, and then the original Z-axis LSB is discarded, which compresses 

the 6-byte sample into a 5-byte sample. 

Table 12: ADXL Sample Structure (compressed) 

  

ADXL SAMPLE (5 bytes - compressed) 

0 1 2 3 4 

X-AXIS (LSB), Z-AXIS (LSB) X-AXIS (MSB) Y-AXIS (LSB), Z-AXIS (LSB) Y-AXIS(MSB) Z-AXIS (MSB) 

7 6 5 4 3 2 1 0 bits 15-8 7 6 5 4 3 2 1 0 bits 15-8 bits 15-8 

X-axis LSB 
bits 7-3 

unused Z-axis LSB 
bits 7-6 

Y-axis LSB 
bits 7-3 

Z-axis LSB 
bits 5-3 

BYTE BYTE BYTE BYTE BYTE 
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3.4 MainLoop 
The SenseModule embedded software is structured around a variation of an interrupt and event-driven 

“super loop” architecture; MainLoop is the SM’s super loop process (see Figure 6).  MainLoop 

progresses through a series of processing modes, directed by certain events, each of which is indicated 

by a unique event flag (EF).  Several of the processing modes – specifically CommandMode, 

ApproachMode, and SampleMode, are each implemented as separate super loops.  Each super loop 

executes its specific function until conditions encountered during repeated execution of the loop result 

in one or more EFs being set that eventually cause the loop to terminate, with control then returning to 

MainLoop. 

The initial entry point into MainLoop is through the ResetMode process (see Figure 7) after a reset 

event occurs, but the normal execution path starts with the resumption of execution from within the 

SleepMode process (see Figure 8) following a wake-up event. 

The SM spends the vast majority of its time in a micro-power sleep state which is entered and exited 

from within the SleepMode process.  The SM awakens when ambient light is blocked from falling upon 

the SM for a sufficient period.  After waking from sleep, SM execution proceeds to the WakeUpMode 

process (see Figure 9), which configures the P following SleepMode, and then identifies the wake-up 

source. 

If the wake-up source is valid (was initiated by the start-up circuit, and ambient light conditions are still 

sufficiently dark), then WakeUpEF is set, and execution proceeds to determine which of two operational 

branches to enter:  sensor sampling, or command processing.  If the wake-up source was not valid, then 

SM execution proceeds directly to the CleanUpMode process (see Figure 13), before returning to 

SleepMode. 

If the ambient light is sufficiently dark for communications with ComModule, then the SM prompts the 

CM.  If the CM responds, CommandReceivedEF is set after the prompt, and the SM proceeds to the 

CommandMode process (see Figure 10).  The SM can repeatedly loop through CommandMode, 

sequentially processing a string of commands.  When CommandReceivedEF is no longer set coming out 

of CommandMode, the SM proceeds to CleanUpMode, and then returns to SleepMode. 

If the ambient light level condition was not sufficient for communication with the CM, or the CM did not 

respond to the prompt, the SM takes the sensor sampling branch, where the SM samples and stores the 

light and ADXL waveforms.  The sensor sampling branch is composed of two processes: ApproachMode 

(see Figure 11) and SampleMode (see Figure 12), both of which are also super loops. 

ApproachMode and SampleMode have similar functionality, with all data begin collected and stored in 

two circular buffers, one for ambient light samples, and one for ADXL samples.  The major difference 

between the two modes is that in ApproachMode, no data is transferred to the EEPROM.  Rather, the 

two sample buffers are used to implement a “pre-release” function, capturing the several seconds of 

sensor data that immediately precede release of the ball. 
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Upon a valid release of the ball (ReleaseDetectedEF), the SM immediately switches from 

ApproachMode to SampleMode.  The SM continues to collect and store new sensor data in the circular 

buffers, but the SM also starts to commit (write) the sample pages currently stored in those buffers to 

EEPROM as part of the new Ball Record.  Existing pages are written from the circular buffer tail, while 

new data is stored in the page currently at the head of the buffer. 

The SM stops collecting sensor data when it detects that the ball has stopped rolling or the maximum 

number of light and ADXL pages have been collected.  The SM exits SampleMode after it has committed 

the last of the collected sample pages to memory, and proceeds to CleanUpMode, before returning to 

SleepMode. 

If a valid release was not detected during ApproachMode, the SM skips SampleMode and proceeds to 

CleanUpMode, before returning to SleepMode. 
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Figure 6: SenseModule MainLoop 
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3.5 ResetMode Process 
Reset events can be triggered by hardware or software events, but occur rarely.  Typical hardware reset 

events include loss-of-power detection, resulting from replacement of the battery, or from a watchdog 

timeout.  Software reset events are issued as the result of built-in-test functions that detect anomalous 

conditions within the hardware, such as a CRC failure in the EEPROM, an RTC failure, or an unresponsive 

external peripheral, such as the ADXL345 chip. 

Following any type of hardware or software reset event, the P incorporates a fixed hardware delay, to 

allow its internal hardware functions to stabilize, including the system clock, and then starts execution at 

its reset vector address, which jumps to the ResetMode process (see Figure 7).  ResetMode takes care 

of configuring the internal hardware functions (reset sources, watchdog, oscillators, smaRTClock), 

assigning port pin functionality, and finally enabling the interrupts. 
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Figure 7: ResetMode Process 
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3.6 SleepMode Process 
The SenseModule always returns to SleepMode (see Figure 8) at the end of every iteration through the 

main processing loop (as well as the rare occasion when it is coming out of ResetMode).  It handles an 

orderly shutdown of the various internal P hardware functions and external peripherals, and then 

places the P in an internal micro-power sleep mode.  The SM spends the vast majority of the time in 

SleepMode, waiting for a wake-up event to occur.  While in SleepMode, only two internal hardware 

functions are enabled: the smaRTClock and CP0, which serves as the ambient light start-up source. 

There are three events that can wake the P from its internal sleep mode: 

1) Ambient light start-up – a light-to-dark transition of sufficient length causes the P’s CP0 

comparator to issue a wake-up event so that the SenseModule can start sampling. 

2) Real Time Clock (RTC) 24-hour alarm – the smaRTClock reaches 24 hours, and issues a wake-up 

event so that the P can update the RTC date. 

3) RTC failure – the smaRTClock has failed, which issues a wake-up event so that the P can 

reconfigure the smaRTClock, and hopefully recover from the failure. 

Upon waking up, SleepMode determines the source of the wake-up event.  If an ambient light wake-up 

event is detected, the SM exits SleepMode, and returns to MainLoop, which then calls WakeUpMode.   

Note that SleepMode does not enable any peripherals; WakeUpMode is responsible for that task. 

If an RTC alarm awoke the SM, SleepMode processes the alarm event.  If an ambient light wake-up 

event is not also present, SleepMode then puts the SM back to sleep. 

If the source is from an RTC failure, SleepMode processes the event, and then issues a software reset. 
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Figure 8: SleepMode Process 
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3.7 WakeUpMode Process 
The SenseModule enters WakeUpMode (see Figure 9) upon detection of an ambient light start-up event 

coming out of SleepMode.   WakeUpMode handles an orderly start-up of the P and its peripherals, and 

then starts ambient light sampling.   WakeUpMode samples the ambient light background to detect 

which type of start-up condition exists before passing execution back to MainLoop, which then decides 

how to proceed, based on the status of the two EFs (ComModuleEF, WakeUpEF) that WakeUpMode can 

set. 

In order for ComModuleEF to get set, the ambient light level must remain below the ComModule 

threshold for a minimum # of sample times, within the WakeUp time out period.  

Similarly, in order for WakeUpEF to get set, the ambient light level must remain below the WakeUp 

threshold for a minimum # of sample times, within the WakeUp time out period. 

The CM threshold is lower (darker) than the WakeUp threshold – thus if ComModuleEF is set, then 

WakeUpEF is set, as well.  Ambient light sampling is halted when either EF is set, or when the WakeUp 

timeout is reached.  If WakeUpEF has been set, WakeUpMode checks the integrity of the EEPROM 

database, and fetches the ConfigPage from EEPROM and places it into P RAM. 

Processing then returns to MainLoop, which then decides whether to proceed with execution of the 

loop (WakeUpEF is set), or return the SM to SleepMode (WakeUpEF did not get set, which is the result 

of an invalid start-up condition). 
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3.8 CommandMode Process 
CommandMode (see Figure 10) processes all commands received from the ComModule.  MainLoop 

handles detecting the presence of the CM, receiving and parsing the command string, and then handing 

off execution of the command to CommandMode. CommandMode executes the requested command.  

There are four basic commands: 

1) Read EEPROM Page 

2) Read Ball Record 

3) Write EEPROM Page 

4) Set EEPROM Defaults 

Command reception and processing is implemented within a loop structure in MainLoop so that 

multiple commands can be received and processed during a single SenseModule wake cycle.  After all 

command processing has been completed, or after a command error has been detected, 

CommandMode terminates, and returns control to MainLoop. 

Appendix C (page 118) details the communication protocols used between the ComModule and the 

SenseModule, including the ComModule detection protocol, and the implementation and timing 

diagrams for the software UART. 

3.8.1 Read EEPROM Page Command 

The Read EEPROM Page command reads 128-byte EEPROM pages starting at the requested page, and 

transmits them to the CM, one page at a time.  After the CM receives the transmitted page, it can either 

terminate the command, or it can issue a “next page” response, and the SM will transmit the next 

contiguous page in EEPROM memory.  Thus, it is possible for the CM to request any number of 

contiguous EEPROM pages within one command. 

3.8.2 Read Ball Record Command 

The Read Ball Record command is a special version of the Read EEPROM Page command that requests 

EEPROM pages by specifying a Ball Record number, or by requesting the newest ball record.  There is 

also a provision in the command for requesting the next ball record (which is the oldest ball record that 

the CM has not yet uploaded.  The Read Ball Record command looks up the Ball Page address for the 

specified Ball Record, and then issues requests via the Read EEPROM command to retrieve the 

necessary EEPROM pages, one-at-a-time, for transmission to the CM. 

3.8.3 Write EEPROM Page Command 

The Write EEPROM Page command writes data to the EEPROM at the specified page.  This is the only 

command that can also specify individual bytes within a page.  The command is used primarily to 

configure the SM’s system parameters on the Configuration page. 

3.8.4 Set Defaults Command 

This command is used to return the SM back to a default state.  It clears the entire EEPROM, and then 

sets the Configuration page and the Ball Pointer page to default values. 
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Figure 10: CommandMode Process 
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3.9 ApproachMode Process 
ApproachMode (see Figure 11), followed by SampleMode, collaborate to detect, capture, and store the 

ambient light and 3-axis accelerometer sensor readings.  ApproachMode manages the sampling process 

commencing with the bowler’s approach, and continuing through release detection, at which time it 

hands the sampling duties off to SampleMode, which continues sampling during the ball’s traversal of 

the lane, and through the ball’s contact with the pins. 

During ApproachMode, all samples are collected and stored within pages in the light and ADXL circular 

buffers.  Those buffers accumulate the most recent three (3) seconds of sensor readings immediately 

preceding release of the ball, essentially implementing pre-trigger buffers, with release serving as the 

trigger.  ApproachMode does not commit any data to EEPROM; rather it captures Light and ADXL 

samples and stores them in their respective circular buffers, whose contents it hands off to 

SampleMode after release is detected.  SampleMode takes care of committing the sensor data 

collected during the bowler’s approach to EEPROM while it continues sampling, placing the new samples 

at the heads of the circular buffers, while transferring sample pages from the tails of the buffers to 

EEPROM. 

The SenseModule enters ApproachMode after MainLoop has determined that a valid wake-up condition 

occurred (WakeUpEF is set), and that the presence of the ComModule was not detected within the CM 

detection period after waking up from SleepMode. 

Before sampling commences, ApproachMode retrieves the location of the next available Ball Record 

Pointer and Ball Page from the Configuration Page in EEPROM.  It then initializes the light and ADXL 

circular buffers, wakes up the light and ADXL sensors, configures the ADXL sensor, initializes the release 

and shutdown variables, and initiates waveform sampling. 

ApproachMode then puts the P into a low-power IdleMode while waiting for any of a number of 

sampling-related interrupts to occur.   Those interrupts periodically cause the P to vector from 

IdleMode to their respective interrupt vectors – it is possible to have additional interrupts trigger while 

processing the interrupt that pulled the P out of IdleMode.   Each triggered interrupt performs its 

function, and then sets one or more event flags, as appropriate. 

Upon return from the last interrupt vector that was processed coming out of IdleMode, ApproachMode 

captures a copy of the current EFs, before resetting the EFs.  Execution proceeds to the event flag 

processing loop, which processes all of the captured EFs that have been set since the last iteration of the 

EF loop (it is possible to have multiple EFs to process in a single loop).  There is a fixed round-robin 

priority order to EF processing – processing of certain early (high-priority) EFs can trigger additional 

lower-priority EFs that will be processed later in the EF loop.  

It is also possible for further interrupts to occur while processing the current set of EFs.  Those additional 

interrupts, occurring subsequent to the beginning of EF processing, are processed as they occur, but any 

EFs they set are accumulated for the next iteration of the EF loop.  Thus, when the current EF loop 

terminates, and ApproachMode is ready to return the P to IdleMode, a check is first performed to 
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identify any additional EFs that may have accumulated during the previous iteration of the loop.  If any 

such EFs exist, then the return to IdleMode is skipped, and a new iteration of the EF loop commences.  

Eventually, there will be no new EFs, and the P will return to IdleMode. 

The iterative process of waiting in IdleMode, and then processing interrupts and EFs continues until 

release is detected, or the release timeout expires.  If release is not detected within the time out period, 

then all sampling processes are shutdown, the collected sample data is discarded, ApproachMode 

terminates, and execution returns to MainLoop, which skips SampleMode, and proceeds to 

CleanUpMode and ultimately back to SleepMode. 

If release is detected, then ReleaseEF is set, sampling is allowed to continue, ApproachMode 

terminates, and execution returns to MainLoop, which then calls SampleMode to take over the 

sampling process.  The EF loops for ApproachMode and SampleMode are quite similar, and both modes 

respond to the same interrupts.  The main differences between the two processes are: 

1) ApproachMode terminates upon detection of release, or upon reaching release timeout.  

SampleMode terminates upon detection of shutdown, or upon reaching shutdown timeout. 

2) Both processes store samples at the heads of the sample buffers.  However, ApproachMode 

does not transfer sample pages to EEPROM.  Rather, its purpose is to implement a “pre-

trigger” process that collects the samples immediately preceding release.  As soon as 

SampleMode commences, it begins committing the contents of the circular buffers at the 

tails of the buffers to EEPROM, while continuing to store the latest sample data at the heads 

of the buffers.  This is a classic producer-consumer problem: SampleMode must be able to 

transfer circular buffer pages to EEPROM (consume) faster than it stores new pages in those 

circular buffers (produce). 

Processing of ApproachMode event flags proceeds in the following order: 

3.9.1 ProcessSampleClockEvent (SampleClockEF) 

SampleClockEF is set by the Light Sample Timer interrupt and serves as the “clock tick” for release 

timeout.  ProcessSampleClockEvent counts the Sample Clock ticks, and checks the count against the 

release time out value.  If the release time out expires before release is detected, ApproachModeTOEF 

is set, sampling is disabled, and ApproachMode terminates. 

3.9.2 ProcessLightSamplesEvent (LightSamplesEF) 

LightSamplesEF is set by the ADC0 interrupt (Light Sampling ADC) when the Light Samples buffer is full.  

ProcessLightSamplesEvent transfers the buffer contents to the Light Page at the head of the Light 

circular buffer.  When the current Light page is full, it advances the head pointer to the next page.  The 

Light release condition is checked here.  If Light release is detected, LightReleaseEF is set. 

3.9.3 ProcessADXLWatermarkEvent (ADXLWatermarkEF) 

ADXLWatermarkEF is set by the Port 0 Interrupt when the ADXL345 issues a Watermark interrupt upon 

reaching 25 ADXL samples in its internal buffer.  If ProcessSamplePageEvent has not already initiated 
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the ADXL page transfer, then ADXLReadPageEF is set for processing by ProcessI2CControlEvent later in 

the EF loop.  

3.9.4 ProcessADXLSampleEvent (ADXLSampleEF) 

ADXLSampleEF is set by the SMBUS0 interrupt (I2C) whenever it has buffered and compressed an ADXL 

sample into 5-bytes.  ProcessADXLSampleEvent transfers the 5-byte sample to the current ADXL sample 

page.  If the current sample page has been filled, this routine advances the ADXL circular buffer head 

pointer to the next page.  The ADXL release condition is tracked here, and if ADXL release is detected, 

ADXLReleaseEF is set. 

3.9.5 ProcessI2CControlEvent (all EFs) 

ProcessI2CControlEvent is the “traffic cop” for the I2C bus (SMBUS0).  The I2C bus is a shared resource 

between the ADXL345 and the serial EEPROM, and connects both the ADXL345 and the EEPROM to the 

microprocessor.  ProcessI2CControlEvent is in charge of prioritizing competing requests, and assigns and 

manages “ownership” of the I2C bus.  The routine also helps manage the Light and ADXL Circular Page 

Buffers.  After this routine assigns “ownership” of the I2C bus, ProcessSamplePageEvent handles 

initiating the actual transfer of individual sample pages over the I2C bus. 

There are three types of actions competing for the I2C resource: ADXL Page Reads, Light Page Writes, 

and ADXL Page Writes.  However, since there are no Light or ADXL Page Writes to EEPROM during 

ApproachMode, only ADXL Page Reads can occupy the I2C bus during ApproachMode. 

3.9.6 ProcessSamplePageEvent  (I2C mutex, I2C retry) 

ProcessSamplePageEvent takes care of initiating the transfer of data via the I2C bus, based on the 

“ownership” of the I2C bus as determined and assigned by ProcessI2CControlEvent.  If the I2C mutex is 

available, or the last attempt to initiate I2C communications failed (because the EEPROM was still busy 

writing the previous page), then ProcessSamplePageEvent calls the event processing routine for the I2C 

action that currently has ownership of the I2C bus.  Since there are no Light or ADXL Page Writes to 

EEPROM during ApproachMode, ProcessSamplePageEvent only calls ProcessReadADXLPageEvent 

during ApproachMode. 

3.9.7 ProcessReadADXLPageEvent (ADXLReadPageEF) 

ProcessReadADXLPageEvent is called from ProcessSamplePageEvent.  It sets up the new ADXL page at 

the head of the ADXL circular buffer, and then initiates the I2C bus request. 
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3.10 SampleMode Process 
SampleMode (see Figure 12) takes over where ApproachMode left off, essentially “inheriting” the state 

of the SenseModule from ApproachMode.  Where ApproachMode managed collecting sample data 

during approach and release, SampleMode handles sampling from immediately after release through 

the ball’s impact with the pins.   

ApproachMode “primed” the Light and ADXL circular buffers with the most recent three (3) seconds of 

sensor readings that immediately preceded detection of release.   After ApproachMode has detected a 

valid release condition, SampleMode takes care of committing (writing) the sensor data collected during 

ApproachMode to EEPROM while it also continues sampling, placing the new samples at the heads of 

the circular buffers, while transferring sample pages from the tails of the buffers to EEPROM. 

The SM enters SampleMode after MainLoop has determined that a valid release condition occurred 

(ReleaseDetectedEF is set) during ApproachMode.  At the start of SampleMode, the sample page 

counters, sample time out detection, and sample shutdown detection are all initialized. 

As with ApproachMode, SampleMode returns the P to IdleMode while waiting for any of a number of 

sampling-related interrupts to occur.    Each triggered interrupt performs its function, and then sets one 

or more event flags, as appropriate.  Upon return from the last interrupt vector that was processed 

coming out of IdleMode, SampleMode captures a copy of the current EFs, before resetting the EFs. 

Execution proceeds to the SampleMode event flag processing loop, which processes all of the captured 

EFs that have been set since the last iteration of the EF loop (it is possible to have multiple EFs to 

process in a single loop).  There is a fixed round-robin priority order to EF processing – processing of 

certain early (high-priority) EFs can trigger additional lower-priority EFs that will be processed later in 

the EF loop.  

It is also possible for further interrupts to occur while processing the current set of EFs.  Those additional 

interrupts, occurring subsequent to the beginning of EF processing, are processed as they occur, but any 

EFs they set are accumulated for the next iteration of the EF loop.  Thus, when the current EF loop 

terminates, and SampleMode is ready to return the P to IdleMode, a check is first performed to 

identify any additional EFs that may have accumulated during the previous iteration of the loop.  If any 

such EFs exist, then the return to IdleMode is skipped, and a new iteration of the SampleMode EF loop 

commences.  Eventually, there will be no new EFs, and the P will return to IdleMode. 

The iterative process of waiting in IdleMode, and then processing interrupts and EFs continues until 

automatic shutdown is detected (LightShutdownEF and ADXLShutdownEF are set), or the sample 

timeout expires before shutdown is detected (SampleModeTOEF is set).  In either case, SampleMode 

continues writing sample pages to EEPROM until the circular buffers are both empty.  All sampling 

processes are shutdown, and after the conclusion of sample page transfer to EEPROM, NewBallEF is set 

to indicate that there is New Ball Record stored in EEPROM.  Execution then returns to MainLoop, 

where CleanUpMode takes care of updating the Configuration Page, before the SM returns to 

SleepMode.  
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The event flag loop for SampleMode is quite similar to that for ApproachMode, and responds to the 

same interrupts.  However, SampleMode handles the following additional events: 

1) SampleMode both collects new sample pages, as well as commits (writes) previously collected 

sample pages to EEPROM. Thus, it must manage three tasks that utilize the I2C bus resource.   As 

soon as SampleMode commences, it begins committing the current page contents of the 

circular buffers to EEPROM, beginning at the tails of the buffers, while continuing to store the 

latest sample data to the pages at the heads of the buffers.  This is a classic producer-consumer 

problem: SampleMode must be able to consume pages (transfer circular buffer pages to 

EEPROM), faster than it produces pages (stores new pages in those circular buffers). 

2) SampleMode detects the automatic sampling shutdown condition, as well as tracks sampling 

timeout. 

Processing of SampleMode event flags proceeds in the following order: 

3.10.1 ProcessSampleClockEvent (SampleClockEF) 

SampleClockEF is set by the Light Sample Timer interrupt and serves as the “clock tick” for automatic 

sampling shutdown detection.  The Light and ADXL time out events are captured elsewhere, by checking 

for the maximum number of pages that can be captured during sampling. 

3.10.2 ProcessLightSamplesEvent (LightSamplesEF) 

LightSamplesEF is set by the ADC0 interrupt (Light Sampling ADC) when the Light Samples buffer is full.  

ProcessLightSamplesEvent transfers the buffer contents to the Light Page at the head of the Light 

circular buffer.  When the current Light page is full, it advances the head pointer to the next page.  The 

Light shutdown condition is checked here.  If Light shutdown is detected, LightShutdownEF is set. 

3.10.3 ProcessADXLWatermarkEvent (ADXLWatermarkEF) 

ADXLWatermarkEF is set by the Port 0 Interrupt when the ADXL345 issues a Watermark interrupt upon 

reaching 25 ADXL samples in its internal buffer.  If neither the ADXL sampling shutdown condition nor 

the ADXL sampling timeout condition have been detected, then ADXLReadPageEF is set for processing 

by ProcessI2CControlEvent later in the EF loop.  

3.10.4 ProcessADXLSampleEvent (ADXLSampleEF) 

ADXLSampleEF is set by the SMBUS0 interrupt (I2C) whenever it has buffered and compressed an ADXL 

sample into 5-bytes.  ProcessADXLSampleEvent transfers the 5-byte sample to the current ADXL sample 

page.  If the current sample page has been filled, this routine advances the ADXL circular buffer head 

pointer to the next page.  The ADXL sampling shutdown condition is tracked here, and if detected, 

ADXLReleaseEF is set, and ADXL sampling is disabled. 

3.10.5 ProcessI2CControlEvent (all EFs) 

ProcessI2CControlEvent is the “traffic cop” for the I2C bus (SMBUS0).  The I2C bus is a shared resource 

between the ADXL345 and the serial EEPROM, and connects both the ADXL345 and the EEPROM to the 

microprocessor.  ProcessI2CControlEvent is in charge of prioritizing competing requests, and assigns and 

manages “ownership” of the I2C bus.  The routine also helps manage the Light and ADXL Circular Page 
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Buffers, and the Light and ADXL sampling timeouts.  After this routine assigns ownership of the I2C bus, 

ProcessSamplePageEvent handles initiating the actual transfer of individual sample pages over the I2C 

bus. 

There are three types of events competing for the I2C resource: ADXL Page Reads (ADXLReadPageEF), 

Light Page Writes (LightWritePageEF), and ADXL Page Writes (ADXLWritePageEF).  

ProcessI2CControlEvent processes and prioritizes all three.  When it detects that the I2C bus is available 

for assignment (has completed its most recent task, or is idle when an EF comes in), it assigns new 

ownership based on the following prioritization conditions: 

1) ADXLReadPageEF has the highest priority, as the ADXL345’s internal sample buffer must be 

read before it overflows.  The ADXLWatermarkEF is issued when the ADXL sample buffer has 

reached 25 samples (every 125 ms).  The ADXL sample buffer can hold a maximum of 32 

samples, which leaves 35 ms to start reading the buffer contents (at 200 Hz, 5 ms per sample). 

2) LightWritePageEF receives a higher priority than ADXLWritePageEF under one condition.  The 

first Light page also doubles as the Ball Page (the first page of any Ball Record).  Thus, the first 

Light page must be the first page written to EEPROM for a new Ball Record. 

3) ADXLWritePageEF and LightWritePageEF have equal priorities, with the exception of 2) above.  

When both types of pages are available in the sample buffers, priority alternates between the 

ADXLWritePageEF and the LightWritePageEF, so that neither event suffers from “starvation”, 

which prevents overflow of either circular buffer, while the other is being serviced.  In actuality, 

there are eight (8) ADXL pages generated for each Light page, since an ADXL page fills up in 125 

ms, as opposed to a Light page, which takes 1 second to fill up.  However the alternate page 

writing scheme is sufficient to prevent starvation. 

3.10.6 ProcessSamplePageEvent (I2C mutex, I2C retry) 

ProcessSamplePageEvent takes care of initiating the transfer of data via the I2C bus, based on the 

ownership of the bus as determined and assigned by ProcessI2CControlEvent.  If the I2C mutex is 

available, or the last attempt to initiate I2C communications failed (because the EEPROM was still busy 

writing the previous page), then ProcessSamplePageEvent calls the event processing routine for the I2C 

action that currently has ownership of the I2C bus.  Those event processing routines are 

ProcessReadADXLPageEvent, ProcessWriteLightPageEvent, and ProcessWriteADXLPageEvent. 

3.10.7 ProcessReadADXLPageEvent (ADXLReadPageEF) 

ProcessReadADXLPageEvent is called from ProcessSamplePageEvent.  If ADXL sampling has not timed 

out, it sets up the new ADXL page at the head of the ADXL circular buffer, and then initiates the I2C bus 

request. 

3.10.8 ProcessWriteLightPageEvent (LightWritePageEF) 

ProcessWriteLightPageEvent is called from ProcessSamplePageEvent.  It stores the current Ball Record 

page number into the Light Page located at the tail of the buffer, sets the Light Buffer page location to 

be written to EEPROM, as well as the destination EEPROM page address, and initiates the I2C request. 
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3.10.9 ProcessWriteADXLPageEvent (ADXLWritePageEF) 

ProcessWriteADXLPageEvent is called from ProcessSamplePageEvent.  It stores the current Ball Record 

page number into the ADXL Page located at the tail of the buffer, sets the ADXL Buffer page location to 

be written to EEPROM, as well as the destination EEPROM page address, and initiates the I2C request. 
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Figure 12: SampleMode Process 



 

57 
 

3.11 CleanUpMode Process 
MainLoop calls CleanUpMode (see Figure 13) to handle any remaining processing after coming out of 

WakeUpMode, CommandMode, ApproachMode, or SampleMode. 

Currently, there is nothing additional to be done when coming into CleanUpMode from WakeUpMode 

or ApproachMode, and CleanUpMode returns immediately to MainLoop so that the SenseModule can 

return to SleepMode. 

3.11.1 CommandMode Clean Up 

Following the termination of CommandMode, CleanUpMode turns off serial reception and 

transmission, and retrieves the Ball Pointer Page from EEPROM, and generates a new count of the new 

and deleted Ball Records.  New ball records are those that have not yet been uploaded to the 

ComModule.  Deleted Ball Records are those records that have been at least partially overwritten by 

more recent Ball Records. 

CleanUpMode then retrieves the Configuration Page from EEPROM so that it can update the following 

Ball Record database parameters: 

 firstNewBall 

 newBallCount 

 deletedBallCount 

After the above parameters have been updated, the Configuration Page is written back to EEPROM, and 

CleanUpMode terminates and returns to MainLoop, so that the SenseModule can return to SleepMode. 

3.11.2 SampleMode Clean Up 

Following the termination of SampleMode, CleanUpMode first checks that a new ball has been 

captured.  As SenseModule development continues, there will be some post-processing of the potential 

new ball record to verify that it resulted from a legitimate waveform, and not from a false start-up 

condition, such as that generated during the return of the ball from the pin setting machine, through the 

subway, to the ball return.  Such false start-up conditions have already been observed on occasion 

during initial SM testing. 

Currently, whenever SampleMode terminates, it indicates that it has captured a new ball, and 

CleanUpMode retrieves the Ball Page for the new ball from EEPROM (first page of the new Ball Record), 

and updates the following Ball Record information for the new ball: 

 Ball Page header 

 sampleCount 

 ballDate 

 ballTimeStamp 

 endTimeStamp 

 lightPages 

 adxlPages 

After the Ball Page has been updated, CleanUpMode commits it back to EEPROM. 
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CleanUpMode then retrieves the Ball Pointer Page from EEPROM, and updates all of the Ball Record 

Pointers for which any of their corresponding Ball Record pages were overwritten/deleted by the new 

Ball Record.  The Ball Pointer entry for the new ball is then updated, and the Ball Pointer Page is 

committed back to EEPROM. 

The last CleanUpMode task is to retrieve the Configuration Page from EEPROM and update the 

following database parameters: 

 ballCount 

 newestBall 

 nextBallPage 

 fristNewBall 

 newBallCount 

 deletedeBallCount 

 nextBall 

After the above parameters have been updated, the Configuration Page is written back to EEPROM, and 

CleanUpMode terminates, so that the SenseModule can return to SleepMode. 
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3.12 Sampling Data Flow 
The SenseModule’s main function is as a data collection platform for its two sensors: 

1) Ambient Light Sensor (TSL13 Light-to-Voltage converter) 

2) Acceleration and Tilt Sensor (ADXL345 3-axis accelerometer) 

The sampling intervals and reading of the sensor data are all interrupt-driven, while storage of that 

sensor data is event-driven.  The following section describes how the various interrupts, events, 

processes, and data structures relate to each other. 

3.12.1 Ambient Light Sampling and Storage 

The ambient light sampling data flow diagram is given in Figure 14.  All ambient light samples are 

initiated by an interrupt from the 240 Hz Light Sample Timer, which has two phases.  The first phase 

supplies power to the TSL13 Light-to-Voltage converter and sets the timer to interrupt again 100 s 

later, allowing the TSL13's output to stabilize after power-up. 

The second phase sets the timer back to phase 1 (240 Hz), and starts the ADC0 conversion process that 

samples the TSL13 output.  When the ADC conversion is complete, ADC0 issues a conversion complete 

interrupt.  The ADC0 interrupt starts the data flow process for light samples. 

The ADC0 interrupt has three phases.  The first two phases alternate every 4.167 s (240 Hz).  The first 

phase captures the first 240 Hz light sample of a pair of samples to be summed together.  The second 

phase captures the second sample of that pair, adds it to the first sample, takes the average of the two 

samples, and stores the averaged reading into a 12-element sample buffer for later transfer to the Light 

Page buffer.  Thus, the resulting 120 Hz samples have been low-pass filtered to remove the 120 Hz ripple 

induced in the ambient light readings by the overhead fluorescent lighting installed in most bowling 

establishments.  The second phase issues SampleClockEF. 

The third phase occurs coincident with the second phase when the ADC0 Sample Buffer is full (every 100 

ms, 12 averaged samples).  The ADC0 interrupt transfers the buffer contents to the Light Sample Buffer 

and issues LightSampleEF.   

ProcessSampleClockEvent is called from within the ApproachMode and SampleMode event processing 

loops when SampleClockEF is set, which counts the time stamps, and also takes care of tracking the 

ApproachMode time out function while in ApproachMode. 

ProcessLightSamplesEvent is called from within the ApproachMode and SampleMode event processing 

loops when LightSamplesEF is set, and takes care of transferring the 12 Light samples from the Light 

Sample Buffer to the Light Page at the head of the Light Page circular buffer.  During SampleMode, 

when the current Light Page has filled up (1 sec), LightPageEF is set, so that ProcessI2CControlEvent can 

process the new Light Page. 
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3.12.2 Acceleration Sampling and Storage 

The acceleration sampling data flow diagram is given in Figure 15.  The ADXL345 collects 3-axis 

acceleration samples autonomously at ~200 Hz, and accumulates the samples in its internal sample 

buffer.  When that buffer reaches 25 samples, the ADXL345 issues an interrupt via an external pin to the 

P, which the Port 0 PortMatch interrupt interprets as an ADXL Watermark event.  That interrupt sets 

ADXLWatermarkEF, saves the last captured RTC time as the start time for the ADXL345’s current buffer 

contents, and then captures the current RTC value for the next ADXL Watermark interrupt. 

ProcessWatermarkEvent is called from within the ApproachMode and SampleMode event processing 

loops when ADXLWatermarkEF is set, and if ADXL sampling has not already been shut down or timed 

out, then it sets ADXLReadPageEF.  While in SampleMode, it also counts the number of ADXL 

Watermark events as an approximation for the total time spent in SampleMode (125 ms precision). 

ProcessI2CControlEvent is called from within the ApproachMode and SampleMode event processing 

loops, and initiates transfer of the ADXL345 sample buffer contents via SMBUS0 when the I2C bus next 

becomes available. 

The SMBUS0 interrupt handles retrieving the ADXL345 sample buffer contents using two phases.  Phase 

1 of the SMBUS0 interrupt reads sample bytes, one at a time, from the ADXL345’s buffer, and 

accumulates them in the interrupt’s ADXL Buffer, until that buffer contains a complete ADXL sample (6 

bytes).  Phase 2 of the SMBUS0 interrupt transfers those bytes to the ADXL Sample Buffer, and sets the 

ADXLSampleEF, so that ProcessADXLSampleEvent can then continue processing the ADXL sample during 

event processing.  

ProcessADXLSampleEvent is called from within the ApproachMode and SampleMode event processing 

loops when ADXLSampleEF is set, and compresses the 6-byte ADXL sample in place into a 5-byte 

sample.  It then stores the sample in the ADXL Page at the head of the ADXL Page circular buffer.  

ProcessADXLSampleEvent also tracks the ApproachMode ADXL Release condition, and the 

SampleMode ADXL Shutdown condition, and initiates the transfer of the next ADXL sample, if the 

current ADXL page has not been filled.  When the page has been filled, ADXLPageEF is issued so that 

ProcessI2CControlEvent can process the new ADXL page. 
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3.12.3 Sample Page Transfer and Storage 

The sample page transfer data flow diagram is given in Figure 16.  ProcessI2CControlEvent (3.10.5) is 

called on every iteration of the SampleMode event processing loop, after the primary data collection 

events have been processed.  This routine prioritizes competing I
2
C requests and assigns and manages 

“ownership” of the I
2
C bus.  It finds the next available pages in the Light and ADXL circular buffers, and 

hands the locations of those pages off to ProcessSamplePageEvent (3.10.6) to initiate the I
2
C transfers. 

During ApproachMode, there is only one active source for I2C events: ADXL Read Page events 

(ADXLReadPageEF).  Thus, there is no competition for the I2C bus during ApproachMode.  

During SampleMode, however, there are three sources competing for the I2C bus: 

1) ADXL Read Page events (ADXLReadPageEF) 

2) Light Write Page events (LightWritePageEF) 

3) ADXL Write Page events (ADXLWritePageEF) 

ADXL Read Page events are initially triggered by ADXL Watermark events, and the page is transferred to 

the P from the EEPROM via the I2C bus as a 150-byte stream (25 6-byte samples) – 150 separate 

SMBUS0 interrupts must be processed in order to retrieve the ADXL345 buffer contents. 

Light Write Page events are triggered whenever the Light Page circular buffer is not empty.  Since that 

buffer is full coming out of ApproachMode, Light Write Page events start being issued immediately after 

SampleMode starts. 

ADXL Write Page events are triggered whenever the ADXL Page circular buffer is not empty.  Since that 

buffer is also full coming out of ApproachMode, ADXL Write Page events also start being issued 

immediately after SampleMode starts. 

Thus, the start of SampleMode is the busiest time for the I2C bus, as SampleMode is constantly striving 

to catch up on writing Light and ADXL pages from the tails of their respective circular buffers to the new 

Ball Record in EEPROM, while also transferring new ADXL pages from the ADXL345’s sample buffer to 

the head of the ADXL Page circular buffer, and storing new Light Samples at the head of the Light Page 

circular buffer. 

The Ball Record array located in EEPROM is also one large circular buffer.  It spans 1022 pages, from 

EEPROM page 2 to EEPROM page 1023.  Ball Records are variable length, consisting of a Ball Page, and a 

mix of Light Pages and ADXL Pages.  The contents of those pages all come from the Light Page and ADXL 

Page circular buffers, transferred via the I2C bus.  The pages of a new Ball Record are written 

contiguously to EEPROM, overwriting the existing contents.  When EEPROM page 1023 is written, the 

Configuration Page (page 0), and the Ball Pointer Page (page 1) are skipped over, and the next available 

sample page is page 2. 
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Section IV: SenseModule Performance and Raw Data Collection 
Although the SenseModule collects ambient light data similar to that of the original SMARTDOT module, 

the 3-axis accelerometer waveforms that the SM was designed to record had not yet been collected or 

observed.  Additionally, the morphology, phase, and interrelation of those waveforms were needed in 

order to develop the detection algorithms required for automatic operation of the SM.  Thus, the 

SenseModule has evolved through several iterations of hardware and embedded software from bench-

top prototype, to its initial incarnation as a manual raw data collection platform, to the fully functional 

device presented in this paper.  Those three phases of development are presented below. 

1) Bench-Top Prototype: The initial development of the SenseModule and the ComModule was 

conducted on breadboard prototypes utilizing F930DK development kits from Silicon 

Laboratories [23].  The embedded software for both the SM and the CM was developed using 

the Silicon Labs IDE, along with Keil’s assembler and C51 compiler [18].  Using the breadboard 

prototypes, it was possible to evaluate the feasibility of the hardware design, develop the 

fundamental architecture of the embedded software, the EEPROM data structures, and work 

out the communication scheme between the SM, the CM, and the PC. 

2) First-Look Data Collection: Until the first SenseModule made its way down the lane in a bowling 

ball, only the very basic morphology of the 3-axis acceleration waveforms could be accurately 

predicted.  Ultimately, real-world acceleration data had to be collected to gain a better 

understanding of those waveforms before a truly autonomous SM could be developed.  The first 

SM prototypes that could be placed under a finger insert in the ball were developed based on 

the hardware design and embedded software from the bench top breadboard.  The schematic 

and printed circuit board drawings were generated using Eagle PCB layout software [19].  In 

April of 2010, Advanced Circuits [30] manufactured the SenseModule printed circuit boards from 

Gerber files generated from the schematic shown in Figure 2, and then Advanced Assembly [31] 

assembled five SM prototypes using those PCBs.  The earliest SM versions operated only in a 

manual, one-shot mode, and were capable of collecting and storing just a single set of ambient 

light and acceleration waveforms at a time.  Several rounds of real-world data collection were 

conducted from early-May through mid-June of 2010. 

3) Autonomous Operation:  The raw data waveforms collected during the rounds of testing in (2) 

were then used to devise the first automated routines for the SenseModule.  The fully 

automated functionality of the SM evolved through iterative development and testing from late-

June through late-August of 2010, resulting in the SM’s automatic start-up, valid activation and 

release detection routines, and automatic shutdown processes.  This phase represents the state 

of the SenseModule development as presented in this paper. 

As with the SMARTDOT module, it must be noted that the author has been the sole user of the 

SenseModule to this point in its development, and that all of the raw data waveforms collected and 

presented in this paper were generated from the author’s particular bowling style.  Thus, the automatic 

detection algorithms currently implemented in the embedded software are undoubtedly biased towards 

that style.  Careful attention has been applied in attempting to design generic and robust detection 

algorithms, but further extensive data collection and testing across multiple bowling styles must be 
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conducted, followed by additional analysis and refinement of the resulting raw data waveforms, in order 

to insure truly robust and reliable autonomous SenseModule operation across a variety of users.  

Appendix B (page 117) presents a side-by-side comparison of typical ambient light and impact data 

recorded by the original SMARTDOT module and the SenseModule.  Appendix E (page 125) includes graphs 

of the raw data waveforms from the 18 Ball Records that were collected during the last testing session 

of the SenseModule that utilized the hardware design and embedded software presented in this paper. 

4.1 Physical Constraints 
The SenseModule complies with all of the previously specified physical design constraints (2.1.1): 

1) Transparent: Operation of the SenseModule requires no intervention on the part of the bowler, 
and it is not physically intrusive under the finger insert.  The SM automatically awakens from 
SleepMode when the bowler picks up the ball and puts their fingers in the finger holes, and 
records the sensor data starting with the bowler’s approach through the ball falling into the pit 
at the end of the lane.  When the bowler wants to upload the data, they place the ComModule 
over the finger hole containing the SM, and the data is automatically transferred to the CM. 

2) Small and Light Weight: The dimensions and weight of the SenseModule prototype are given in 
Table 13 below.  The SM prototypes were built on 1.60 mm (0.062”) thick PCBs, but 0.080 mm 
(0.031”) thick PCBs could be used, reducing the weight by ~1.00 gm.  Using a CR2016 90 mAh 
battery would reduce the height and weight by 1.6 mm (0.063”) and 1.75 gm (0.044 oz), 
respectively, but would also yield only 35% of the battery life.  The dimensions and weight do 
not include a plastic holder for the PCB and battery. 

Table 13: SenseModule Dimensions 

SenseModule As Built 
As Built w/CR2032 
225 mAh Battery 

0.080 mm PCB w/CR2032 
225 mAh Battery 

0.080 mm PCB w/CR2016 
90 mAh Battery 

Diameter 24.2 mm (0.951”) -same - -same - - same - 

Height 4.8 mm (0.190”) 8.0 mm (0.315”) 7.2 mm (0.285”) 5.6 mm (0.220”) 

Weight 2.00 gm (0.071 oz) 5.25 gm (0.185 oz) 4.25 gm (0.150 oz) 2.50 gm (0.088 oz) 

3) Low Cost: The component cost for the SenseModule comes in under $15 in quantity (10,000 
pieces), including the battery, but excluding an as-yet-to-be-developed plastic case. 

4) Low Power: The average current draw of the SenseModule’s major modes of operation is given 

in Table 14.  The values in the “Current” column are calculated based on the component values 

and data sheet properties.  The totals at the bottom of the table are measured RMS values.  

Over the course of a year, the SenseModule’s quiescent SleepMode current of 2.5 A drains 

about 22 mAh from the 225 mAh CR2032 battery, leaving 203 mAh for normal operation.  

Average accumulated run time for each Ball Record appears to be about 30 seconds, including 

false activations during the trip back from the pinsetter to the ball return.  Thus, a single true 

activation results in a total draw of 40 mAs for the battery, yielding 20,000 such activations per 

battery in a year.  If we assume an average of 18 activations per game, a single CR2032 battery 

will yield 1100 games per year.  If we further assume that only half of the battery capacity is 
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usable in this application, the SenseModule is still capable of recording 550 games on a single 

CR2032 battery.  Using a 90 mAh CR2016 battery will reduce the overall height and weight of 

the module significantly, but will only yield 35% of the above estimate, or ~200 games. 

Table 14: SenseModule Current Draw 

SenseModule 
Current 

(ave) 
SleepMode 

CommandMode 
(5-10 s) 

ApproachMode 
(10-30 s) 

SampleMode 
(<= 5 s) 

Startup Circuit 1.3 A X    

CP0 0.5 A X    

smaRTClock (RTC) 0.6 A X    

8051F921 (P) 600 A  X X X 

TSL13 50 A  X X X 

ADXL345 (sample) 180 A   X X 

ADXL345 (read) 100 A   X X 

EEPROM (write) 115 A    X 

EEPROM (read) 100 A  X   

TRX LED (IREF0) 250 A  X   

Average Current  2.5 A 1.10 mA 1.03 mA 1.15 mA 

4.2   SenseModule Hardware 
Pictures of the current version of the SenseModule prototype are shown in Figure 17.  The prototype is 

shown true size, with the top of the SenseModule on the left and the bottom on the right. 

  

Figure 17: SenseModule Prototype 

8051F921 P 

24FC1025 EEPROM 

ADXL345 Accelerometer 

TSL13 Ambient Light Sensor 

Optek 521 Phototransistor 
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4.2.1 Start-Up Circuit 

The ambient light-based startup circuit has proven sufficient for this application.  It ignores transient 

light/dark pulses, and awakens the SenseModule from SleepMode only after a transition to an extended 

period (~500 ms) of near total darkness.  That condition generally occurs in response to the following: 

1) Normal activation before the bowler’s approach 

2) Normal activation for uploading data via the ComModule 

3) Pinsetter elevating the ball from the pit to the subway ramp 

4) Ball entering the subway at the pinsetter 

5) Ball exiting the subway at the ball return 

6) Ball rolling on the ball return 

7) Ball being placed in a bag, locker, trunk, or closet 

Conditions 3-7 are considered false activations.  However, each of those occurrences yields only a single 

activation, after which, the SenseModule returns to SleepMode and must again be exposed to light, and 

then an extended period of darkness before the next activation can occur.  There are additional steps 

that could be implemented in software to detect those false activations, e.g. checking the ADXL345 for a 

certain threshold of motion as part of the wake up validation checks. 

4.2.2 Microprocessor (8051F921) 

The 8051F921 P has proven to have all the functionality and versatility necessary to meet the evolving 

requirements of this application.  Besides the original reasoning for selecting this P for the 

SenseModule, the following functionality has also proven to be quite useful: 

1) The crossbar switch enabled versatile function assignment to port pins, which greatly simplified 

the PCB layout. 

2) The ability to use a configurable on-board comparator as a wakeup source eliminated the need 

for an external D-FF that had originally been used in the startup circuit, and enabled the use of 

the smaRTClock, since waking up from SleepMode does not require resetting the smaRTClock. 

3) The port match interrupt provided a versatile interface to the interrupt pins of the ADXL345. 

4) The smaRTClock (RTC) was not originally considered for the design, but has proven to be useful 

in several ways: it provides an accurate time base for both sensors (which operate at different 

sampling frequencies), it provides a time base that enables time/date stamping of the Ball 

Records, and it can also be used to track run time, and thus battery usage. 

5) The built-in CRC function is also convenient for calculating the CRCs for the EEPROM pages, as 

well as for the reliable exchange of data between the SenseModule and the ComModule. 

6) The built-in programmable current source (IREF0) drives the transmit LED, allowing for 

configurable control of the LED current, eliminating the need for a current limiting resistor. 

4.2.3 EEPROM (24FC1025) 

The 128-byte page size of the EEPROM, along with the ability to buffer and write 128-bytes during a 

single transaction has proven to be quite valuable in this application.  The page buffering allows for 

consolidating and optimizing I2C bus activity, while also minimizing the number of EEPROM write cycles, 

which reduces the overall current drain on the battery during SampleMode. 
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4.2.4 Accelerometer (ADXL345) 

This design leverages the autonomous sampling capabilities of the ADXL345.  The ADXL345 has its own 

configurable sample timer, contains an internal FIFO sample buffer, and supplies interrupts to the P 

when that buffer is full.  The SenseModule leverages those capabilities so that the ADXL345 can 

accumulate samples on its own, while the P concentrates on sampling the ambient light waveform, and 

on transferring light and ADXL pages via the I2C bus.  With the ADXL345 configured for autonomous 

operation, the P is able to spend more time in its internal low-power IdleMode, which reduces the 

overall SenseModule current during both ApproachMode and SampleMode. 

Analog Devices has recently released a lower cost accelerometer (ADXL343) that is pin-for-pin, and 

functionally compatible with the ADXL345.  The cheaper ADXL343 has a lower acceleration bandwidth of 

320 Hz, but that lower bandwidth is actually a plus in this application, as it will serve as a “pre-filter” for 

the higher frequency vibration and noise components that the ADXL345 can detect. 

4.2.5 Ambient Light Sensor (TSL13) 

The TSL13 light-to-voltage converter is admittedly overkill for this application.  It was included to enable 

the SenseModule to collect light waveform data similar to that collected by the original SMARTDOT 

module, as well as to correlate the ambient light readings with the ADXL345’s acceleration readings.  

Given that the TSL13 was already designed into this version of the SenseModule, it also doubles as the 

infrared receiver for the SenseModule.  However, its relatively slow step response limits the SM to 

receiving data at 14.4 to 28.8 Kbaud.  Although those rates are sufficient for receiving commands from 

the ComModule, which are relatively short, the infrared UART will eventually be used to transfer 

embedded software updates to the SenseModule, which will be 16 Kb to 32 Kb, and could take 10-20 

seconds to transfer at those slower baud rates. 

Now that the ambient light data has been collected in conjunction with the 3-axis acceleration data, the 

TSL13 can be replaced with a less expensive and more power-efficient circuit.  In fact, it is possible that a 

single Optek 521 phototransistor could be used for the startup circuit, the ambient light sensor, and the 

infrared receiver by having the P switch in/out appropriate biasing resistors, and configure its internal 

comparators, as needed. 

4.2.6 Infrared Transmitter (IREF0 and LED) 

The programmable constant current source (IREF0), combined with a high efficiency LED, provides 

consistent drive current and intensity at sub-milliamp current levels, and the switching speed is fast 

enough for UART operation up to 115/230 Kbaud. 
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4.3 Raw Data Waveforms 
The SenseModule collects four channels of sensor data: ambient light from the TSL13 light-to-voltage 

converter, and the three acceleration axes from the ADXL345 accelerometer.  A graph of the four 

channels of raw data contained in a typical Ball Record is shown in Figure 18.  The time axis across the 

bottom starts when the SenseModule entered ApproachMode and runs until the SM detected an 

automatic shutdown condition, which terminated SampleMode.  The dead space on the graph before 

8.25 seconds is the time the SM spent in ApproachMode waiting for release, storing sample pages in the 

circular buffers that were eventually overwritten by more recent data.  The vertical axis is in G’s, where 

1 G = 9.8 m/s2 (acceleration due to gravity).  The ADXL345 has a range of ± 16 G’s, and the TSL13 has an 

output range of 0-255 counts, which has been scaled to 0-16 G’s on the graph. 

 Result: Indicates the scoring result of the ball.  In this case, the ball entered high in the pocket, 

and the ‘4’ and ‘7’ pins were left standing after the first ball. 

 Time: Time of day and date that the SenseModule was activated (‘0’ on the time scale), taken 

from the P’s smaRTClock. 

 Ts: Total sampling time, in seconds, for this activation of the SenseModule. 

 ADXL Fs: Effective sampling frequency of the ADXL345 for this Ball Record, as measured against 

the P’s smaRTClock (RTC).  The ADXL345’s internal sample clock is configured for 200 Hz. 

 Light Fs: Effective sampling frequency of the TSL13 for this Ball Record, as measured against the 

P’s smaRTClock (RTC).  The P generates a 240 Hz clock for (over)sampling the TSL13 output. 
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Figure 18: Typical Raw Data Waveform 
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4.3.1 Typical Waveform Regions 

Figure 19 is zoomed in on the typical waveform of Figure 18.  The graph is split into the portions of the 

waveform that were captured in ApproachMode and SampleMode, respectively.  The various regions of 

interest are demarcated in red.  In chronological order, those regions are: 

1) Stance: The bowler and ball are relatively motionless, as the bowler prepares to start their 

approach.  The bowler’s fingers block the ambient light from reaching the TSL13. 

2) Approach: The bowler starts their approach by leaning, taking a step, and/or pushing the ball 

forward.  The motion of the ball from the bowler’s arm swing is apparent.  The bowler’s fingers 

still block the ambient light from reaching the TSL13. 

3) Release: The bowler starts applying lift to the ball shortly before release, inducing rapid 

acceleration in the Y and Z axes.  The light level increases as the bowler’s fingers leave the ball. 

4) Loft: The bowler has released the ball, and it is initially in free fall, thus the flat acceleration 

lines.  The ball bounces twice as it hits the lane, as shown by the sudden spikes in all three axes.  

5) Reaction: The ball rolls down the lane, and the tilt sensing aspect of the ADXL345 is evident in 

the roughly sinusoidal waveform as the SenseModule rotates through the gravitational field.  

The light waveform also indicates rotation, from release all the way through the Impact Region. 

6) Impact: The ball hits the pins, as indicated by the increased “noise” and the spikes in the 3 axes.  

The light level peaks as the ball passes under the fluorescent light illuminating the pins. 

7) Shutdown: The ball falls off the back of the pin deck, into the pit.  The ADXL axis waveforms 

once again flatten out, due to free fall, and the ambient light level drops to near 0. 
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Figure 19: Raw Data Waveform Regions 
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4.3.2 False Activation Waveforms 

The SenseModule also wakes up from “false” activations generated during the ball’s trip from the 

pinsetter back to the ball return.  Figure 20 displays a graph of the resulting data.  The SenseModule had 

just recorded a legitimate Ball Record, and returned to SleepMode.  While the ball was in the pinsetter, 

the SM experienced a prolonged dark period, sufficient to wake up the SM again.  During 

WakeUpMode, the SM detected a sufficient level of darkness to enter ApproachMode, and advanced to 

SampleMode when the ball emerged into the light at A.  SampleMode timed out at the end of E. 

A) The pinsetter picked up the ball, and placed it on the subway acceleration ramp.  As the ball 

emerges from the pinsetter, the light level increases and the SenseModule detects release. 

B) The ball encounters the subway booster wheel, which accelerates the ball and sends it into the 

subway.  There is another spike in the light level from the rotation of the ball, as well as spikes in 

the ADXL axes from the sudden acceleration applied by the ball wheel.  There is also a sustained 

increase in the ball’s angular velocity, indicated by the amount the Z-axis is offset from 0 G’s.  

C) The ball rolls along the subway, as noted by the tilt response signatures of all three axes, the 

absence of ambient light, and the continued offset of the Z-axis from 0 G’s. 

D) The ball reaches the ball return booster wheel, which elevates the ball from the subway to the 

ball return.  The acceleration spikes when the ball encounters the ball wheel.  Ambient light is 

still absent, as the ball has not yet emerged from the subway. 

E) The ball transitions from a rapid rotation to a much slower rotation as it is elevated to the ball 

return.  The ball still has not emerged from the subway, as indicated by the absence of light. 
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Figure 20: Subway (False) Activation 
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The waveform shown above in Figure 20 is the result of the SenseModule waking up while in the 

pinsetter, and detecting release soon after entering ApproachMode, as the ball emerged into the light 

before entering the subway.  Figure 21 depicts a second form of false activation.  In this scenario, the SM 

was in SleepMode when it emerged from the pinsetter.  The ball entered the subway, woke up after 500 

ms of darkness, entered ApproachMode, and waited for release.  The ApproachMode time out period 

(30 seconds) is sufficient for the ball to traverse the subway and emerge from the ball return, where the 

SM detected release, and transitioned to SampleMode. 

A) The ball is in the subway.  The first 3.4 seconds of sensor readings were overwritten in the SM’s 

circular page buffers while it was waiting for release during ApproachMode. 

B) The ball is still in the subway.  In ApproachMode, the SenseModule captures up to 3 seconds of the 

sensor readings that immediately precede release in its circular page buffers. 

C) The ball reaches the ball return booster wheel, as indicated by the sudden spikes in acceleration  

and the cessation of rotation. 

D) The ball is elevated to the ball return, as indicated by the slow rotation.  The SM is still in the dark, 

with the ball having not yet emerged from the ball return. 

E) The light level increases as the ball emerges from the ball return at 5.6 seconds.  The SenseModule 

detects release at 5.7 seconds, as the finger hole with the SM rotates toward the ceiling. 

F) The ball is slowly rolling around the ball return, while also wobbling from side to side, as indicated 

by the high frequency, low amplitude spikes in the acceleration waveforms.   The SM shuts down 

automatically due to the extended period of relative inactivity on all sensor channels.  
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Figure 21: Ball Return (False) Activation 
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4.4 Automatic Functions 
In order for the SenseModule to operate without any user intervention, it must be able to automatically 

identify and discriminate between the various regions described in Section 4.3.  It must also be able to 

discriminate between the legitimate activation shown in Figure 19, and the false activations shown in 

Section 4.3.1.  The critical task is to identify and recognize regular patterns across the raw data channels, 

and then implement efficient algorithms so that the SenseModule can automatically discern the 

presence (or absence) of those patterns.  Looking at the raw data waveforms shown in Figure 19, that 

task might seem relatively straight-forward, as there are clear demarcations in the waveforms between 

those regions.  However, the situations depicted in Figure 20 and Figure 21 occur regularly, and result in 

waveforms with very similar characteristics.  How to discriminate between those types of waveforms, 

and reliably detect valid activations while ignoring false activations, is not so obvious. 

The task becomes even more complex when constrained to working with an 8-bit processor, running at 

3.05 MHz, with internal memory access limited to 4.25 Kb of RAM.  In addition, the SenseModule’s 

collection of automated detection algorithms must operate in real-time, in order to limit the P’s run 

time to collecting and storing legitimate waveforms.  Several automatic functions were initially 

developed and further refined through multiple iterations of data collection, analysis, and tweaking of 

the embedded software.  Much of the initial valid waveform and release detection 

development/testing/refinement was conducted in the author’s basement, before a ball was ever rolled 

down a real bowling lane.  Several real-world testing sessions then followed at a local bowing 

establishment, interspersed with more “basement bowling” sessions.  The automatic detection 

algorithms have been further refined since the testing for this paper was conducted.  The updated 

algorithms are proprietary at this time, thus they are not presented in this paper. 

4.4.1 Valid Activation Detection 

A normal waveform is the result of the bowler retrieving the ball from the ball return, placing their 

fingers in the ball (inducing SenseModule start-up), and then delivering the ball to the lane, with a 

characteristic sudden increase in acceleration, immediately followed by an increasing light level. 

A typical ApproachMode waveform is shown in Figure 22.  The components of a valid activation are: 

A) ApproachMode: Extends from time 0, when the bowler first put their fingers in the ball, 

blocking light to the SenseModule, and continues to a point within the Release Window (E). 

B) Stance: Bowler and ball are relatively motionless, as the bowler prepares for their approach. 

C) Approach Motion: Encompasses all motion from the start of the bowler’s approach to release of 

the ball.  The bowler leans forward, takes a step, and/or pushes the ball away from their body to 

start their approach.  During the bowler’s arm swing, the ball arcs forward, then back, and then 

forward again, followed by the bowler applying lift to the ball (D) just before release (E). 

D) Lift Motion: Indicated by extended acceleration, primarily in the Y and Z axes.  The Y-axis points 

in the general direction of the lane and the Z-axis points toward the center of the ball. 

E) Release Window:  Release occurs at the end of lift, marked by the flattening of the acceleration 

curves (ball is in free fall during loft), and a marked increase in the ambient light level. 
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In order to extend battery life, and maximize the number of valid waveforms that can be stored in 

EEPROM, the SenseModule must be able to quickly discriminate between valid activations generated by 

the bowler delivering the ball, and the regular “false” activations that result from the pinsetting machine 

sending the ball into the subway and back to the ball return. 

Since the SenseModule can spend up to 30 seconds in ApproachMode waiting for release, it also 

performs valid activation detection during that time.  While the SenseModule waits for the bowler to 

deliver the ball, it constantly evaluates the incoming sensor readings for light and motion consistent 

with the bowler delivering the ball to the lane.  As the SM records that sensor data in its circular page 

buffers, it also looks for evidence of false activation.  When the discrimination algorithm identifies 

sensor readings consistent with a false activation, the SenseModule immediately exits ApproachMode, 

and returns directly to SleepMode, without transferring any sensor data to the EEPROM, just as it does 

when ApproachMode times out. 

During development and testing, the SenseModule recorded numerous false activation scenarios, two of 

which are presented in Section 4.3.1.  When the ball falls off the end of the lane, and into the pit, it 

generally enters a period of prolonged darkness.  Once the ball is in the pit, the pinsetting machine 

elevates the ball to the subway ramp by means of a spinning wheel or rotating belt that accelerates the 

ball, while also inducing the ball to rotate.  During the ball’s transfer from pit to subway, it is possible for 

the SM to sense an ambient light start-up condition, followed by increasing acceleration levels while still 

dark, followed by an increasing light level, with the ball then rolling along the subway rails. 
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If the SenseModule hasn’t woken up before entering the subway, it can still wake up as a result of that 

event, since the SM once again is exposed to a prolonged period of darkness in the subway before 

emerging back into the light on the ball return, where conditions of increasing acceleration followed by 

an increasing light level can again occur. 

Thus, normal activation cannot be uniquely described by a simple scenario of prolonged darkness, with 

an eventual sudden increase in acceleration on multiple axes, followed by an increasing light level.  

Further complicating the matter of reliably detecting false activations is that the SM must err on the side 

of caution, e.g. it must detect every valid wake up, at the expense of allowing some false activations to 

continue into release detection. 

The current version of the false activation detection algorithm considers the following conditions: 

1) The magnitude, frequency, and rate of change of the ambient light level 

2) The magnitude, frequency, and rate of change of the acceleration axes 

3) The relative phase of the changes in light level and acceleration across all three axes 

4) Various timing constraints between certain light and acceleration events 

The results of the false activation detection routine tested for this paper have been mixed.  Table 15 

summarizes the results from testing of the SenseModule routine.  Across 20 games (200+ frames) of 

testing, the SenseModule captured the vast majority (over 97%) of true activations, but it rejected only 

68% of the false activations.  Even at 97%, the miss rate on valid activations is still too high; perhaps 1 

miss in 1000 valid activations is acceptable.  It is also apparent that there is a high rate of false activation 

(over 80%) induced by the pinsetter/subway/ball return.  Fortunately, there is another line of “defense” 

in rejecting false activations, which is implemented at the release detection level. 

Table 15: False Activation Detection 

SenseModule 
(219 frames) 

Valid Activations False Activations 

Captured 214 56 

Rejected 5 123 

Total Events 219 178 

Detection Efficiency (%) 97.7% 68.5% 

4.4.2 Valid Release Detection 

The SenseModule remains in ApproachMode for up to 30 seconds, waiting for the bowler to release the 

ball.  When the SM detects release, it transitions from ApproachMode to SampleMode, and begins 

committing the circular page buffer contents collected during ApproachMode to EEPROM, as part of a 

new Ball Record.  The SM needs to detect release in a timely fashion so that it can begin transferring the 

ApproachMode page buffer contents to EEPROM before that data is overwritten by the new sensor data 

collected during SampleMode.  
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A typical release scenario is shown in Figure 23.  The components of a valid release are: 

A) ApproachMode: Starts at time 0 and ends with transition to SampleMode after release 

detection.  The SenseModule stores sensor data in the circular page buffers during this mode. 

B) SampleMode: The transition from ApproachMode occurs upon the SenseModule detecting 

release.  The SM commits circular buffer pages to EEPROM during this mode. 

C) Approach Region: Begins with bowler’s approach.  Ends with delivery of the ball at release (H). 

D) Loft Region: Starts immediately after release (H).  Contains multiple impacts with the lane (J). 

E) Rotation Region: The ball is in constant contact with the lane, rolling toward the pins. 

F) Lift Motion: The bowler imparts lift to the ball, as indicated by increased acceleration in the Y 

and Z axes waveforms, which continues until release, when the waveforms flatten out. 

G) Release Window: The SenseModule must detect release within this window, which is bounded 

by an increasing light level and sudden changes in acceleration on all three axes. 

H) Release Point: The true release point, where the ball enters free fall (I), as indicated by the 

sustained increased light level and the flattening of the acceleration waveforms. 

I) Free Fall: The flat acceleration waveforms indicate the ball was released above the level of the 

lane.  It is in free fall until it impacts the lane at (J).  Not all bowlers loft the ball this much. 

J) Loft Impacts: The ball bounces off the lane after the first impact, but remains in contact with the 

lane after the second impact, which starts the rotation region at (E). 

 

Figure 23: Expanded Release Region 
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The release detection scheme might seem obvious from Figure 23: identify the increasing Y and Z axes 

acceleration during the absence of light, and then look for an increasing light level, followed by the 

flattening of the acceleration curves.  However, this graph is taken from one frame from one bowler.  

Not all bowlers apply as much lift to the ball, nor do they apply lift with the same timing, nor do they loft 

the ball as much.  In fact, many avid bowlers deliver the ball very smoothly to the lane, with little or no 

loft, and with much less lift.  Complicating matters, an individual bowler may alter their release and loft 

in order to adjust to varying lane conditions.  Thus, the seemingly obvious release indicators in the 

above graph will not be so obvious (and in some cases likely to be absent) for many bowlers. 

Recalling the two false activation scenarios presented in Section 4.3.1, it is possible that if either of 

those scenarios is not rejected as a false activation during ApproachMode, they may each eventually 

lead to false release events.  Both scenarios are followed by the ball emerging from darkness into light, 

while the ball is also experiencing sudden changes in acceleration.  It is the eventual detection of a 

release event that leads to the SenseModule recording a false activation as a Ball Record in EEPROM, 

likely overwriting a legitimate Ball Record with one from a false activation.  Thus, there is also a need for 

a false release detection algorithm. 

The false activation and release detection routines run simultaneously during ApproachMode.  If a false 

activation is detected first, release detection is aborted (along with ApproachMode), and the 

SenseModule returns to SleepMode.  If release is detected first, the false activation routine is aborted, 

and the SM transitions to SampleMode. 

In order to reliably detect true release conditions, while rejecting releases that occur as part of a missed 

false activation, the SenseModule first identifies a likely release event, switches to SampleMode, and 

begins recording data to the new Ball Record in EEPROM.  The false release detection routine then 

constantly evaluates the sensor readings following the initial release to determine whether or not to 

continue SampleMode.  False release detection can take several hundred milliseconds to decide on a 

result.  If the SM does detect a false release, it aborts SampleMode without advancing the 

nextBallRecord and nextBallPage pointers.  Thus, upon the next valid activation and release, the SM will 

overwrite the partial data it previously recorded from the false activation and release with a valid new 

Ball Record. 

As with false activation detection, false release detection must be conservative, e.g., it must favor valid 

releases, at the expense of missing some false release events.  The current version of the false release 

detection algorithm considers similar factors as false activation detection, but applies different emphasis 

and priority to those factors.  In essence, false release detection is an extension of false activation 

detection, just as SampleMode is an extension of ApproachMode. 

The results of the implementation of the false release detection routine tested for this paper have also 

been mixed.  Table 16 summarizes the results of the false release detection algorithm.  The 

SenseModule keeps track of the number of times it rejects (ignores) false activations and false releases.  

Although the SM doesn’t know how many false activations/releases it fails to catch, any false activation 

that makes it through both detection routines results in the waveform eventually being stored as a Ball 
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Record in EEPROM.  Such records are easy to recognize visually after the data has been uploaded to the 

ComModule.  Thus, it is possible to discern between false activations caused by the pinsetter and those 

caused by the subway/ball return that made it through both detection routines.  

Table 16: False Release Detection Results 

SenseModule 
(219 frames) 

Valid Releases 
Pinsetter “False” 

Releases 
Subway/Ball Return 

“False” Releases 

Captured 214 2 13 

Rejected 5 41 

Total Events 219 56 

Detection Efficiency (%) 97.7% 73.2% 

Of the 56 total false activations that got through to false release detection, 41 were rejected by the 

routine, yielding a combined detection efficiency of 93%.  That level must certainly be improved upon, 

but it is encouraging given the limited level of scrutiny and analysis that was applied to the sensor data 

in developing the detection algorithms used for testing purposes for this paper. 

4.4.3 Shutdown Detection 

If it were not for the dual concerns for minimizing SenseModule run time, while maximizing the Ball 

Record capacity of the EEPROM, the SenseModule could simply record a fixed amount of data for each 

Ball Record.  However, given those two goals, the SenseModule should stop recording sensor data as 

soon as it has passed through the pins.  Thus, an automated early shutdown algorithm has also been 

implemented.  Figure 24 shows a graph of a typical impact region. 

A) SampleMode: The SenseModule commits sensor data to a new Ball Record in EEPROM. 

B) SleepMode: The SenseModule returns to SleepMode after shutdown is detected. 

C) Rotation Region: The ball rotates as it rolls towards the pins. 

D) Impact Region: The ball hits the pins as it travels through the pin deck. 

E) Shutdown Region: The ball falls off the back of the pin deck, and shutdown is detected here. 

F) Pin Deck Light: The ambient light level spikes as the ball passes under the pin deck light. 

G) Pin Impacts: The ball hits the pins, the Z-axis acceleration drops off, and all acceleration 

waveforms begin to exhibit increased noise levels. 

H) Free Fall: The ball bounced in the air while hitting the pins, indicated by flat acceleration lines. 

I) Free Fall: The ball is falling off the back of the pin deck.  The ambient light level drops to near 0. 

The automatic shutdown detection routine implemented in this version of the SenseModule is fairly 

straight forward.  It relies on a combination of three basic characteristics of the raw data: 

1) The three acceleration waveforms simultaneously flatten out as the ball goes into free fall off 

the back of the pin deck. 

2) The ambient light level generally flattens out near 0 while the ball is in free fall. 

3) Some combination of the above two elements persist for a minimum duration, which must be 

longer than the free fall period exhibited in (H) above.  For the final version of the algorithm 

tested for this paper, the minimum persistence was set to 50 ms. 
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There is also a shutdown time out period that starts at the beginning of SampleMode (upon release 

detection) that serves as a “fail-safe” in case early shutdown is not detected.  SampleMode runs for a 

maximum of five seconds, and then automatically shuts down.  The results for the shutdown detection 

algorithm developed for this paper have been quite promising.  For all activations (valid and false) the 

routine detected early shutdown before the shutdown time out period expired every time (219 times 

out of 219 activations).  Note that the SenseModule continues to collect samples until the current ADXL 

Sample Page is full, before it shuts down. 

4.5 SenseModule Future Work 
The initial development work has been accomplished, the basic waveform characteristics have been 

identified, and autonomous operation has been achieved.  The next phase of development will be 

focused on refining the SenseModule hardware and embedded software to achieve more efficient and 

robust operation, as well as to reduce the cost, size, and weight of the module. 

4.5.1 SenseModule Hardware 

The SenseModule hardware design used for this paper is now four years old. Based on the knowledge 

gained through the collection and analysis of the raw data waveforms, the following refinements can be 

made to the SM hardware design. 

1) The TSL13 light-to-voltage converter is no longer needed for this project.  At a minimum, it can 

be replaced with a second Optek 521 phototransistor to serve as both the ambient light sensor, 

and as the serial receiver for the infrared UART.  It might even be possible to multiplex those 
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functions with the existing Optek 521 by switching bias resistors, and changing comparator 

thresholds, as needed.  Using the Optek 521 as the infrared receiver for the serial UART would 

also allow the use of a much faster baud rate (115/230 Kbaud) for the infrared UART’s serial 

receiver.  Consolidating the optical receivers into a single phototransistor is the cheapest 

solution for ambient light detection and serial reception. 

2) Silicon Labs (the same company that makes the SenseModule P) recently introduced the Si1141 

ambient light and proximity sensor, which presents a highly promising and intriguing solution for 

replacing the SM start-up circuit and the TSL13 LTV.  From the Silicon Labs website [29]: 

“The Si1141 is a low-power, reflectance-based, infrared proximity and ambient light 
sensor with I2C digital interface and programmable-event interrupt output. This 
touchless sensor IC includes an analog-to-digital converter, integrated high sensitivity 
visible and infrared photodiodes, digital signal processor, and an integrated infrared LED 
driver with fifteen selectable drive levels. The Si1141 offers excellent performance 
under a wide dynamic range and a variety of light sources including direct sunlight. The 
Si1141 can also work under dark glass covers. The photodiode response and associated 
digital conversion circuitry provide excellent immunity to artificial light flicker noise and 
natural light flutter noise.  The Si1141 device is provided in a 10-lead 2x2 mm QFN 
package and is capable of operation from 1.71 to 3.6 V over the –40 to +85 °C 
temperature range.” 

The Si1141 in proximity sensing mode would not only replace the entire start-up circuit, it could 
also directly detect valid activations and release events, since it would only respond to the 
proximity of the bowler’s finger inserted in the finger hole that contains the SenseModule.  Such 
functionality would greatly reduce the time the SM spends out of SleepMode, since the 
pinsetter, subway, and ball return could no longer generate false activations. 

The Si1141 would also serve as the ambient light sensor.  Since the Si1141 can run 
autonomously, it would offload the burden of the entire ambient light sampling process from 

the P, allowing the P to spend more time in IdleMode. 

The SenseModule would still require a phototransistor as the infrared receiver for its serial 

UART, since the Si1141 has neither an analog output, nor a step response fast enough for it to 

serve that purpose. 

The added expense of the Si1141 would be offset by the cost of the components it replaces, 

combined with a significant reduction in the size, weight, and cost of the battery (CR2016 

instead of a CR2032 3V lithium coin cell). 

3) A plastic case must be developed for the SenseModule.  The case will hold the SM and the 

battery, and allow for user-replacement of the battery.  The case will have two pieces: 

a. A holder that is permanently affixed at the bottom of the finger hole and facilitates 

accurate and repeatable positioning of the SenseModule. 

b. A shell that encapsulates the SenseModule and the battery, and firmly secures the 

SM/battery assembly into the holder.  

4) It should be possible to add an additional 24FC1025 EEPROM chip, which would double the 

capacity of the Ball Record database.  The SenseModule currently has the capacity to store at 
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least 14 Ball Records (at the maximum 8.25 second sample time), but that is not enough to 

capture an entire game, which can consist of up to 21 individual rolls of the ball.  Doubling the 

memory capacity of the SM would be enough to meet that goal.  The Ball Record database, as it 

is currently designed, can manage up to 62 Ball Records without modification. 

4.5.2 Embedded Software 

The development of the SenseModule embedded software has been a major undertaking.  The major 

thrust of this phase of the module’s development was to create a fully functional, autonomous 

prototype.  That goal has been achieved, but there is much more refinement of the embedded software 

to be accomplished.  

1) As mentioned in Section 4.4, the automated detection functions require further refinement, 

e.g., they need to be more accurate, as well as more robust (accommodating of a variety of 

bowling styles).  The inclusion of the Si1141 proximity sensor mentioned under the hardware 

section above would alleviate much of that effort, since it can directly detect the presence of 

the bowler’s finger at activation, and its subsequent absence upon release of the ball.    Absent 

that hardware (or something like it), the SenseModule software must continue to infer 

activation/release from the sensor data it currently collects.  Increasing the reliability of those 

functions would quickly develop into a major research effort, as data from a variety of bowlers 

representing a cross-section of the major bowling styles would need to be collected and 

analyzed. 

2) As currently configured, the SenseModule spends up to 30 seconds in ApproachMode collecting 

data while waiting for release, but then retains only the last three seconds worth of that data.  

The ADXL345 can be configured for autonomous motion sensing, in which the ADXL345 issues 

interrupt(s) to the P upon detecting acceleration readings outside of configurable threshold 

ranges.  After the P has woken up and configured the ADXL345 for motion detection, it could 

return to SleepMode until the ADXL345 detects motion indicative of the bowler having started 

their approach, and issues an interrupt to wake up the P to start ApproachMode. 

3) The capacity of the Ball Record database could be further expanded through compression of the 

sensor data contained in the light and ADXL pages.  The light and ADXL waveforms are 

frequently constrained to a small portion of the overall output range of their respective sensors.  

Offset and/or differential based-storage techniques could be used to compress the readings. 

4) The current draw of the SenseModule is managed by using the P’s built-in IdleMode, and by 

enabling internal and external peripherals only when they are needed.  Judicious switching of 

the P’s system clock while the P is awake could further reduce the SM’s current draw. 

5) The P’s flash program memory is writeable in-system.  Currently, embedded software updates 

for the SenseModule prototypes must be delivered via a direct electrical connection.  The ability 

to download software updates to the SM via its infrared serial UART must be added. 
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4.6 SenseModule Development Summary and Conclusions 
The development of a small, low-cost, autonomous in situ sensor module that fits unobtrusively in an 

existing finger hole and collects, records, and transmits ambient light and 3-axis accelerometer readings 

has been achieved.  The SenseModule fulfills all of the requirements and design criteria that were laid 

out earlier in the paper.  As such, the SenseModule could be the first such device of its kind that meets 

those constraints.  Although the development of the SenseModule has been a success, there is certainly 

room for improvement in the several areas listed in Section 4.5. 

The development of a working SenseModule, along with the collection of the desired sensor data, 

represents the completion of the first part of this project.  A visual inspection of the collected 

waveforms reveals the following notable characteristics that could be further exploited within the SM 

embedded software to enable more consistent autonomous operation. 

1) The bowler’s approach and arm swing generate a relatively slow, smooth, noise-free waveform 

which concludes with a sudden extended increase in acceleration due to the lift and turn the 

bowler applies to the ball just before release. 

2) The simultaneous flattening of the waveforms on all three axes immediately following release is 

a direct indication that the ball is in free-fall during the loft phase.  During loft, the ADXL 

waveforms are confined to the centripetal acceleration generated by the rotation of the ball. 

3) The tilt sensing aspect of the accelerometer is apparent for as long as the ball remains in 

continuous contact with the lane, and is a direct indication that the ball is rolling. 

4) The ball’s impact with the pins is readily apparent from multiple closely spaced spikes in the 

waveforms, accompanied by a sudden increase in the noise content of those waveforms. 

5) The extended free-fall period that follows impact with the pins is a reliable indicator that the 

ball has reached the end of the lane and is falling into the pit. 

6) The content of a valid waveform, as described by the characteristics above, differs greatly from 

the content of the false activation examples presented in the paper.  Although some of those 

characteristics may appear in the morphology of a false activation waveform, their order, 

duration, and amplitude appear to be unique to a valid waveform. 

The primary caveat to all of the above is that the waveforms collected and analyzed so far originated 

from a single bowler, and are characteristic of that bowler’s distinctive style.  The waveforms that result 

from other bowlers with different bowling styles may differ greatly from the ones presented in this 

paper.  Further data collection must be conducted across a wide variety of bowlers and bowling styles in 

order to develop truly generalized and robust autonomous operation of the SenseModule. 

Now that it is possible to collect the 3-axis accelerometer data from within the bowling ball, the next 

phase of the project is to analyze the resulting waveforms in order to extract information useful to the 

bowler.  However, that which is “visually obvious” to a human does not necessarily translate into a task 

that is easy and/or straight-forward to automate for a computer.  The next section of this paper 

summarizes the author’s work in identifying and developing automated algorithms that segment, filter, 

and analyze the raw data waveforms, and then extract useful bowling metrics from those results.  
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Section V: Waveform Deconstruction, Filtering, and Analysis 

As presented earlier, the REVMETRIX system consists of three components: the SenseModule 

(autonomous data collection), the ComModule (data transfer), and the RevMetrixApp (data archival, 

analysis, and presentation).  The SenseModule’s autonomous capability arises from the inclusion of 

algorithms for detecting activation, release, and shutdown that were developed iteratively through 

collection and analysis of the SenseModule raw data waveforms. 

Apart from those automatic detection routines, the SenseModule makes no other decisions, and draws 

no other conclusions about the raw data.  The SM does not need to know the ball’s RPMs (angular 

velocity), nor how fast the ball is traveling down the lane (linear velocity) in order to perform its 

function.  Rather, it identifies characteristics within the raw data in real-time that are indicative of the 

bowler delivering and releasing the ball, the ball rolling down the lane, impacting the pins, and then 

falling into the pit. 

It is the RevMetrixApp (running on a smart phone, tablet, or PC) that will eventually receive the 

SenseModule data through the ComModule, and analyze and present the results to the bowler.  This 

section of the paper presents preliminary analysis of the SenseModule raw data, and proposes methods 

for extracting useful bowling metrics from that data.  Typical metrics of interest are release and impact 

speed and RPMs, axis tilt, loft distance, and delivery and release characteristics.  This work is a precursor 

to the development of the RevMetrixApp. 

Fast Fourier Transforms (FFTs), Finite Impulse Response (FIR) filters, and Wavelet decomposition and 

reconstruction are used to identify the distinct temporal elements of the 3-axis accelerometer 

waveforms that the SenseModule captures.  After segmenting the waveforms, FIR and wavelet-based 

filtering techniques tuned to the morphology and frequency content of each distinct segment are used 

to analyze the segments and extract meaningful metrics for the entire waveform. 

The raw sensor data is uploaded to a PC and stored in an Excel spreadsheet for off-line processing.  

MATLAB M-files import the raw accelerometer data and then employ a combination of FFTs and first-

level Haar wavelet details from the 3-axis waveforms to identify four distinct phases (segments) in the 

temporal evolution of the waveform.  After the waveform is segmented, both FIR filters and 

biorthogonal decomposition/reconstruction are used to extract the third-level approximation from the 

reaction region.  Further filtering of the reaction region reveals the sinusoidal “chirp” signal indicative of 

the ball “revving up” as it approaches the pins.  Extrapolation techniques are used to obtain meaningful 

data at the fringes of the segment. 

For the purposes of this project, a Dell XPS i7-2670QM 2.20 GHz laptop with 8 GB of RAM, running 

Windows 7 (64-bit), served as the analysis platform.  MATLAB student versions 2010a and 2012a, in 

combination with the MATLAB Signal Processing and Wavelet Toolboxes, were used to create and 

implement the analysis algorithms.  Microsoft Excel 2010 was also used as a data analysis and 

presentation tool. 
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5.1 Acceleration Components 
The SenseModule measures acceleration in three orthogonal axes (X, Y, and Z) referenced to the 

ADXL345 accelerometer.  The SM is positioned in the finger hole such that the ADXL345’s X-axis aligns 

parallel to the proximal axis of rotation (across the finger holes), the ADXL345’s Y-axis aligns with the 

proximal direction of rotation (across the thumb hole), and the ADXL345’s Z-axis passes through the 

proximal center of the ball.  In Figure 25 below, the positive X-axis and Y-axis acceleration directions are 

shown, with the positive Z-axis acceleration pointing out of the page. 

Note that the 3-axis acceleration origin is established by the SenseModule’s position within the ball, and 

does not have an external coordinate basis, such as the bowling lane.  Although the ball travels in 

essentially the same direction every time – down a lane that is 60 feet long by 41.5 inches wide – the 

ADXL345’s X and Y axes likely will not align with either of the lane’s dimensions.  In addition, the origin 

rotates with the ball, thus from the lane’s point of view, the frame of reference is constantly changing. 

  

Axis of 
Rotation
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Figure 25: SenseModule Axis Orientation 
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The bowling ball can move through 6 degrees of freedom: linear motion in the X, Y, and Z directions, 

combined with angular motion in the X-Y, X-Z, and Y-Z planes.  The ball also moves within Earth’s 

gravitational field.  The ADXL345 detects the ball’s motion through those 6 degrees of freedom and 

aggregates three types of acceleration into the output for each axis: 

1) Linear: Straight line acceleration. 

2) Angular: Centripetal acceleration due to rotation. 

3) Gravitational: Orientation with respect to gravity (tilt sensing, range of ± 1 g). 

With the SenseModule oriented in the bowling ball as shown in Figure 25, the angular acceleration 

generated by the rotation of the ball registers as positive acceleration for the X-axis and negative 

acceleration for both the Y and Z axes. 

For gravity (tilt sensing), whenever the ball is rolling on the lane, the tilt sensing aspect of the ADXL345 

imposes a sinusoidal component on top of the angular acceleration component.  The magnitude of the 

tilt component is limited to a range of ±1 g.  The Z-axis reads +1 g when the finger hole containing the 

SenseModule points towards the ceiling and -1 g when the finger hole points toward the lane.  The Y-

axis reads +1 g when the finger hole is rotated 90° from the vertical in the direction of the thumb hole 

(ADXL Y-Z plane) and -1 g when rotated 90° away from the thumbhole.  The X-axis reads ±1 g when the 

finger hole is rotated 90° from vertical in the plane of the finger holes (X-Y ADXL plane).  See Figure 26.   

 

Linear acceleration is much more involved.  Throughout the bowler’s approach and delivery, the 

ADXL345 registers a combination of linear acceleration from the bowler’s forward motion toward the 

foul line, and the ball’s acceleration and tilt as it moves through the arc of the bowler’s arm swing.  It is 

not until the bowler begins to apply lift to the ball immediately before release that the ball starts to 

undergo rapid angular acceleration. 

Whenever the ball is rolling on the lane, it experiences linear deceleration in opposition to its direction 

of travel due to the force of friction between the ball and the lane.  The SenseModule rotates in the 

presence of that frictional force, which induces a similar effect as the tilt sensing aspect due to the 
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Figure 26: SenseModule Tilt Orientation 
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gravitational force, but orthogonal to the gravitational force.  Thus, whenever the ball is in contact with 

the lane, the frictional force induces a sinusoidal element on the acceleration readings, as does the 

gravitational force.  For any particular axis, those forces will be 90° out of phase, as the gravitational 

force is directed vertically downward, and the frictional force is directed horizontally backward, 

opposing the ball’s linear motion. 

When the ball is in free fall, e.g., during the loft phase after it has been released, and when it falls off the 

end of the lane into the pit, the ADXL345 only experiences the effects of angular acceleration.  Those are 

the only times that the angular acceleration is completely isolated from the other accelerations. 

The task at hand becomes to separate out the various types of acceleration from the raw data 

waveforms in order to recover the reaction of the ball, and then quantify that reaction for the bowler. 

5.2 Raw Data Waveform Segments 
The raw data waveforms captured for this paper exhibit a response that consistently evolves through 

various acceleration regions over the waveform sample time.  Each waveform can be logically separated 

into the following segments by characterizing the amplitude and frequency content prevalent in the 

respective signals from those regions. 

1) Stance: The period during which the bowler is relatively stationary, just before starting their 
approach.  Steady-state (DC) acceleration due to gravity dominates at this time. 

2) Approach: The time during which the bowler is delivering the ball to the lane.  This segment is 
comprised of DC and low frequency data and concludes when the bowler begins to apply lift and 
turn to the ball immediately before releasing the ball. 

3) Release: At the end of their approach, the bowler applies a sudden and forceful upward lift to 
the finger holes, while also turning the rotational axis of the ball counterclockwise (toward the 
left gutter) for right-handed bowlers.  

4) Loft: This segment immediately follows the bowler’s release of the ball.  The bowler generally 
lofts the ball, which then travels several feet in the air before making its initial contact with the 
lane.  It may then bounce one or more times before remaining in continuous contact with the 
lane.  This segment is comprised of a flat DC-offset component due to angular acceleration, with 
several strong high frequency spikes (one for each impact with the lane) superimposed on that 
DC component.  This segment concludes once the ball maintains contact with the lane. 

5) Reaction: This segment comprises the time between the end of the LOFT segment and the ball’s 
initial impact with the pins.  The ball is rolling on the lane, and is interacting with the lane 
through the force due to friction between the ball and the lane.  This segment is also 
characterized by a DC or low frequency offset component (angular acceleration), with a 
sinusoidal chirp response and high frequency noise superimposed on the waveform (tilt 
response combined with frictional opposition).  The reaction segment ends when the ball 
impacts the pins. 

6) Pin Impact: This segment starts at initial impact with the pins (generally the head pin), and 
continues until the ball starts to fall off the lane into the pit at the end of the lane.  The pin 
impact segment is comprised of several high amplitude spikes (pin impacts), a good deal of high 
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frequency noise, along with a continuation of the sinusoidal tilt response, and a low-frequency 
offset bias due to the angular velocity of the ball.  

7) Shutdown: The ball falls off the end of the lane and into the pit.  The shutdown segment is 
characterized by the sudden transition of all three axes to steady-state acceleration (free fall).  
The SenseModule uses that DC signal to identify automatic shutdown. 

5.3 Automated Segmentation 
The segment boundaries of interest for analyzing the bowling ball dynamics after release are the 

release-loft boundary, the loft-reaction boundary, and the reaction-pin impact boundary.  Each of those 

boundaries is demarcated by rapid changes in acceleration: 

1) Release-Loft: A sudden increase in acceleration occurs as the bowler applies lift to the ball, 

followed by a sudden decrease in acceleration when the bowler releases the ball. 

2) Loft-Reaction: Immediately following release, the ball is in free fall until it contacts the lane, 

generating one or more high amplitude impact spikes. 

3) Reaction-Pin Impact: The ball impacts the pins, generating one or more high amplitude impact 

spikes. 

The ambient light waveform is used first to find a common local starting point for the Release segment.  

The light signal increases fairly rapidly (from very close to 0) at the end of the release motion (see Figure 

27).  The portion of the light waveform following release is then used to recover the fundamental 

frequency of rotation FR of the ball, which manifests itself from release through the first several 

revolutions of the ball.  Alternatively, FR can be determined by plugging the acceleration readings during 

loft and the SenseModule’s displacement from the center of the ball into the angular momentum 

equation.  However, the technique implemented here does not require a prioiri knowledge of the depth 

of the SenseModule within the fingerhole. 

  Figure 27: Ambient Light Waveform 
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After the time of release is identified from the light waveform, the remaining light signal is interpolated 

to 1 millisecond resolution (Fs = 1 kHz), and then a Hamming window is applied across that portion of 

the waveform.  The result is then padded to yield a frequency resolution of 0.5 RPMs (0.00833 Hz) 

coming out of the FFT.  FR is then set to the greatest amplitude FFT frequency bin having a frequency 

greater than 60 RPMs (1.0 Hz).  For example, from Figure 28, FR = Va, the peak angular velocity 

component (and fundamental frequency) of the ambient light waveform frequency spectrum.    FR is 

subsequently used for both wavelet decomposition and FIR filtering of the waveform. 

 

The location of the above three segment boundaries can be found by applying techniques from Wavelet 

theory.  Since Wavelet theory is based on repeated two-level decimation of the digital signal, the 3-axis 

accelerometer readings are first interpolated to yield 25 = 32 samples per Hz, based on the fundamental 

frequency FR found above from the light waveform spectrum.  That step causes each wavelet decimation 

level to occur at an integral harmonic of FR, which yields cleaner results for this application. 

Single-level Haar wavelet decomposition is used to obtain the high frequency details (impacts) of the 3-

axis waveforms.  The Haar wavelet was chosen because the acceleration readings contain both flat 

regions (free fall), and high amplitude spikes (impacts) that the shape of the Haar can easily detect.  The 

details of the Haar wavelet decomposition are extracted, and Figure 29 shows the results of applying the 

Haar wavelet to the 3-axis acceleration signal.  The red trace (s) is the vector magnitude waveform from 

the recombination of the three acceleration axes.  The green trace (d1) shows the 1st-level Haar details 

extracted from the vector magnitude waveform.  A similar process can also be applied to the individual 

acceleration axes. 

Figure 28: Interpolated Light Spectrum 
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The vector magnitude details waveform is used to identify the significant high-frequency impacts in the 

original signals.  Those impacts are used as starting points for locating the segment boundaries.  Various 

statistical characteristics (mean, variance, standard deviation, 1st and 2nd derivatives) are then used to 

accurately localize the exact segment boundaries.  Figure 30 shows the combined impact results, along 

with the 3-axis acceleration traces marked with the segmentation boundaries found from the 

automated segmentation algorithm using the impacts from d1.  The thresholds for identifying the 

significant impacts are shown as dotted lines. 

Figure 31 shows the four segments that resulted from those boundaries.  The APPROACH segment 

contains the stance, approach, and release regions that were described earlier.  The IMPACT segment 

contains both the pin impact and shutdown regions.  For the remainder of the paper, we will focus on 

the LOFT and REACTION segments.  Our intent will be to isolate the linear deceleration, angular 

acceleration, the loft impacts, and the tilt response from each other, and then analyze and extract the 

useful bowling metrics from the resulting filtered component waveforms. 

Figure 29: 1st-Level Haar Details (Impacts) 
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Figure 30: ADXL 3-Axis Segment Boundaries (Impacts) 
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Figure 31: Raw Data Segments 
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5.4 Automated Waveform Deconstruction 
The REACTION segment from Figure 31 is expanded below in Figure 32.  The 3-axis acceleration 

waveforms of the REACTION segment are comprised of three distinct components: 

1) Angular acceleration: Generated by the centripetal force due to the ball’s rapid rotation. 

2) Sinusoidal tilt response:  From the SenseModule rotating through the gravitational field. 

3) High frequency noise:  From irregularities in the contact surfaces between the ball and the lane, 

SenseModule vibration in the finger hole, and digital noise infiltrating the ADXL345. 

As the ball rolls down the lane, the force of friction between the ball and the lane converts the ball’s 

translational kinetic energy to rotational kinetic energy, slowing the ball down, while increasing its 

angular velocity.  The increase in angular velocity is visually apparent in the angular acceleration portion 

of the 3-axis signal of Figure 32, starting at 2.0 seconds, especially in the Z-axis signal. 

As the angular velocity increases, the ball rotates more rapidly within the gravitational field, decreasing 

the period of the tilt response, resulting in a sinusoidal chirp signal.  That chirp signal will become more 

apparent after isolating it from the composite signal, and filtering out the high frequency noise. 

The amplitude of the angular acceleration and the frequency of the tilt response are directly related.  As 

we will see, the phase and amplitude of the 3-axis tilt signals are also related to each other, and can be 

used to reveal the changing position of the ball’s rotational axis. 

Before we can accurately analyze the components of the acceleration waveforms, the above three 

components must be isolated from each other, while filtering out the noise component. 

 

 

Figure 32: REACTION Segment 
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5.4.1 Waveform Deconstruction using Wavelet Decomposition 

The high frequency noise portion of the acceleration waveforms has already been identified as the first-

level component of the wavelet decomposition.  We will use further decomposition to isolate additional 

components of those waveforms.  The partial results of a five-level biorthogonal 6.8 wavelet 

decomposition and reconstruction of the X-axis acceleration waveform are shown in Figure 33 below. 

 
 

 

This is why we interpolated the original 3-axis waveforms into FR x 2n x T samples.  Assuming that the 

high-frequency noise is far enough removed from the signal of interest, there will be some level of 

decimation (in this case levels d1 to d3) that filters out the noise and reveals the tilt response 

superimposed on the angular acceleration response (a3).  At some further level of decimation (in this 

case levels d1 to d5), we see the isolated angular acceleration response (a5) emerge.  The filtered angular 

acceleration response (ss) is superimposed on the original signal (s) to illustrate how well the a5 

approximation conforms to the original signal.  Subtracting a5 from a3 isolates the tilt response from 

being superimposed upon the angular acceleration, as seen in Figure 34 below.  Wavelet 

decomposition/reconstruction works very well to separate out signal discontinuities, whereas an FIR 

filter is more appropriate for filtering noise out of cyclical waveforms.  The acceleration signal, taken as a 

whole, exhibits both types of components.  We have used wavelet decomposition to segment the 

waveform and isolate the components; we can now use an FIR filter on the cyclical portion of that 

waveform, which we have isolated from the REACTION segment. 

Figure 33: 3rd & 5th-Level Bior6.8 Reconstruction 
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5.4.2 Tilt Response 

The results of the two different methods for isolating the tilt response are shown in Figure 34: wavelet 

decomposition/reconstruction (wave) and a conventional FIR filter (FIR).  The wave signals are the a5 – 

a3 results from the previous section.  The FIR signals are the result of filtering the REACTION segment 

using a Hamming window and applying a symmetric FIR filter to preserve the relative phases of the 3-

axis waveforms.  The fundamental frequency of rotation FR was used as a basis to establish low and high 

cut-off frequencies for the pass-band FIR filter.  In order to further attenuate the effects of discontinuity 

at the ends of the REACTION segment, the original signal was “folded” over at either end, before the 

Hamming window was applied, to extend the signal while preserving the frequency content.  

 

The wavelet-derived waveforms are shown with dotted lines, while the FIR-derived waveforms are 

shown with solid lines.  Inspection of the wavelet and FIR results reveals a close correspondence 

between those signals, especially in the frequency and zero crossing regions.  However, there is a small 

but discernible difference in the amplitudes, especially closer to either end of the REACTION segment, 

with the FIR versions displaying more uniform continuity than their respective wavelet versions.  As a 

result, from this point forward, we will use the tilt responses that were obtained using the FIR filter. 

Through a combination of wavelet decomposition/reconstruction and FIR filtering, we have now 

obtained clean sinusoidal waveforms from the tilt sensing aspect of the ADXL345 accelerometer.  We 

will use the periods, amplitudes, and relative phases of those waveforms later to analyze the bowling 

ball’s reaction as it rolled down the lane. 

Figure 34: REACTION Segment Filtered Tilt Response 
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5.4.3 Angular Acceleration and Tilt Response 

We have isolated the angular acceleration component and the tilt response components from each 

other.  Figure 35 shows those two components, along with the raw data waveform (dotted lines) over 

laid on each other.  The filtered tilt response closely follows the raw signal, and the angular acceleration 

component appears to be the running average of the tilt sensing component.  This makes sense, as the 

sinusoidal tilt component was originally superimposed on the angular acceleration waveform. 

 

We will use the isolated angular acceleration waveforms in combination with the tilt sensing waveforms 

to reconstruct the instantaneous angular velocity of the ball, from release through impact with the pins. 

  

Figure 35: REACTION Angular Acceleration and Tilt Response 
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5.4.4 Tilt Response Interpolation and Extrapolation 

Having isolated the acceleration responses above, we can extrapolate the waveforms into the LOFT 

segment.  Recall that the LOFT segment waveforms are flat, since the ball was in free fall, and that the 

only non-DC frequency content was due to the high amplitude impact spikes that were filtered out 

earlier along with the “noise” component.  Figure 36 shows the tilt response extrapolated from the 

REACTION segment into the LOFT segment.  Note that the graph now starts at 0 seconds (the release 

point), and spans the LOFT, REACTION, and PIN IMPACT segments. 

 

This graph is again shown with the filtered signals overlaid on the original raw data signals to show the 

high correspondence of the filtering techniques that have been used to isolate the various acceleration 

components from the original waveforms, as well as filter out the high-frequency noise. 

  

Figure 36: Extrapolated LOFT-REACTION Tilt Response 
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5.5 Waveform Calculations 
Now that we have isolated the various acceleration components, we can begin extracting the metrics 

relevant to the bowler.  Metrics of interest related to the bowling ball that we can derive from the 

collected data are: 

1) RPMs: Release, impact, and instantaneous angular velocity. 

2) Revolutions: Revolution count from release through pin impact, revolution location. 

3) Ball Speed: Release, impact, average, and instantaneous linear velocity. 

4) Loft: Height and distance. 

5) Axis Tilt: Release, impact, and instantaneous deviation of axis from parallel with lane surface. 

Appendix D (page 124) includes an example of the typical output that the current MATLAB analysis 

program produces for one data set. 

We can use the components of the waveform deconstruction effort just described to discover how the 

angular velocity changes over time.  Having that knowledge, we can then use energy conservation 

techniques to find out how the linear velocity of the ball changes as the angular velocity changes.  After 

we have determined the manner in which the linear velocity of the ball changes over time, it then 

becomes possible to determine the initial (release) velocity, which is one of the major execution 

variables that a bowler must learn to control.  We can then locate the ball (along with each revolution) 

on the lane relative to the foul line, rather than relative to the time of release.  That allows us to 

determine the ball loft distance (another major execution variable).  Having found the conversion from 

time (sample index) to distance, we can then deduce the coefficient of friction acting between the ball 

and the lane, which can be used to infer the distribution of oil on the lane. 

Since we know both the length of the lane and the time that it took for the ball to traverse the distance 

from the foul line to the pins, it is easy to calculate the average speed (linear velocity) of the ball.  The 

average linear velocity provides us with a lower bound for the initial linear velocity the bowler applied to 

the ball at release, since the release velocity must have been greater than the average velocity (given 

that the linear velocity of the ball is always decreasing). 

We utilized two different methods to find the angular velocity of the ball from the filtered waveforms.  

However, recovering the instantaneous linear velocity from the ball's average linear velocity and the 

angular velocity of each revolution presents an interesting, challenging, and non-trivial problem. 

The following methods rely on the initial assumption that no energy is lost as friction works to transfer 

energy from the ball’s linear kinetic energy to its angular kinetic energy.  Those methods can be 

generalized to allow for a constant (but arbitrary) percentage of the energy transferred from the linear 

kinetic energy to be lost as heat/vibration due to friction. 

The author’s original paper [1] covered much of this ground, but from a “per-revolution” standpoint, 

rather than a “per-sample” standpoint, e.g., calculations for each revolution of the ball, rather than for 

each sample time.  This portion of the paper provides updated derivations for the techniques presented 

in the original paper, along with the results of implementing those updated algorithms as part of this 

project. 
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Throughout this paper, we have assumed that friction is the only force of any significance acting on the 

ball.  The results of that frictional force become apparent by observing the angular velocity of the ball 

increase as the force of kinetic friction acts to resolve the discrepancy between the initial linear and 

angular velocities of the ball. 

Assume, for the moment, that the ball loses no energy throughout the course of a shot (the total kinetic 

energy of the ball remains constant).  We can then draw the conclusion that all of the energy the ball 

gains from the increase in its angular velocity must have been transferred from the ball's linear velocity, 

i.e., any increase in angular kinetic energy must be exactly offset by a decrease in linear kinetic energy. 

Based on our assumption of constant energy, the energy of the ball at any instant (sample time) must 

also be constant.  Since the angular velocity for each revolution of the ball, and for each sample time, 

has already been found, if the total kinetic energy of the ball for a specific period is known, the linear 

velocity for that period can also be found.  Once the linear velocity at any sample time is known, it is 

then possible to find the ball loft distance, and the location of each revolution of the ball, relative to the 

foul line. 

Putting those assumptions and deductions into more formal terms, the ball possesses constant energy 

throughout its trip to the pins, and its energy at any instant is equal to its energy at any other instant. 

The total energy of the ball (E) is the sum of its potential (P) and kinetic (K) energies,   

      

 Since the ball rolls on a flat, level lane surface, there is no potential energy (P = 0), thus  

    

 Since it is assumed that the ball has constant energy from its release at the foul line to its impact with 

the pins, then for KR (energy at release), KP (energy at pin impact), and Ki (energy at any sample point i), 

            

The assumption of constant energy implies that energy losses due to axis torque, vibration, heat, air 

resistance, and noise generation are negligible.  Therefore the only components of the energy of the ball 

are its angular kinetic energy (K) and its linear kinetic energy (Kv), thus 

         

The linear kinetic energy of an object with mass m and linear velocity v is given by 

   
 

 
    

The angular kinetic energy of an object with mass m, moment of inertia I, and angular velocity  is 

   
 

 
    

The moment of inertia I of a sphere with mass m and radius r has the form 
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The value of k is determined from the mass distribution within the sphere.  We can find k from the 

United States Bowling Congress (USBC) specification for the Radius of Gyration (RoG) of a bowling ball.  

The USBC imposes limits on RoG of 2.430” to 2.800” [10]. 
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The USBC also imposes limits on the radius r of a bowling ball such that 

                    

Combining the USBC limits for RoG and the radius of a bowling ball yields 
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Thus, the range for the moment of inertia for a bowling ball of mass m is 
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The USBC requires bowling ball manufacturers to measure the RoG for each model of bowling ball they 

sell, and that value is available to use in the calculations that follow. 

Substituting the moment of inertia into the equation for angular kinetic energy, we get  

   
 

 
    

 

 
       

Therefore, the total kinetic energy K of the ball is given by 

  
 

 
    

 

 
       

      
 

 
           

Having established the energy equations and the range for moment of inertia, and value for k, we can 

now move on to establishing the calculations for the bowling ball metrics using the waveform 

components we previously extracted. 
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5.5.1 Average Ball Speed 

The average ball speed (linear velocity) can easily be found from the length of lane (60 feet) and the 

time elapsed from release of the ball to its initial impact with the pins.  If we let D be the distance from 

the foul line to the head pin, and Ts be the elapsed sample time from release to pin impact, then 

     
 

  
 

  

  
 

The above equation assumes that the ball is released at the center of the foul line, travels in a straight 

line, and makes contact with the center of the head pin at a distance of 60 feet from the foul line.  In 

reality, none of those assumptions is precisely true.  A discussion on the errors introduced by the 

assumptions made in the paper is presented in Section 5.6. 

5.5.2 Revolution Period and Count 

It is a straight-forward process to locate and count the peaks and valleys in the tilt waveforms.  Figure 37 

depicts the temporal locations of the half-revolutions in the REACTION segment tilt response.  We 

previously extrapolated the tilt response from the beginning of the REACTION segment into the LOFT 

segment.  We can extrapolate the partial revolutions immediately before pin impact from the periods 

and rates of change of the half-revolutions at the end of the REACTION segment. 

 

The half-periods (peak-to-valley and valley-to-peak) of the 3-axis waveforms are counted and then 

averaged to come up with the revolution count.  The difference in sample times between the peaks and 

valleys are then used to determine the period of each half-revolution.  We will use that information next 

to determine the instantaneous angular velocity of the ball. 

Figure 37: REACTION Revolution Location 
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5.5.3 Instantaneous Angular Velocity (RPMs) 

Having isolated the tilt response, we can now determine the peak-to-valley and valley-to-peak times for 

each half-revolution for each tilt waveform from Figure 34.  The half-revolution angular velocities (in 

RPMs) for the revolution containing peak p and valley v are given by 

         
 

       

                          

            
 

     
                              

We can extract the angular velocity for the LOFT segment from the average angular velocity of the first 

250ms to 500 ms of the results in the REACTION segment, since there is generally little friction in that 

part of the lane to generate changes in angular velocity.  Figure 38 below shows a plot of the results. 

 

Notice the effects of the granularity of our measurements.  We previously interpolated the waveforms 

to have 32 samples per Hz of FR, which results in a resolution of ~10 RPMs.  Thus a jitter of one sample 

time in a full-revolution period translates to a step change of 10 RPMs, and a corresponding step change 

of 5 RPMs in the half-period results.  Such step responses will cancel each other out over multiple 

periods, as indicated by the average waveform.  We can apply a fifth-order polynomial curve-smoothing 

routine to the average waveform to reconstruct a smooth instantaneous angular velocity curve from the 

tilt response.  We could also use a higher level of interpolation to increase the RPM resolution: 28 = 256 

samples per Hz of FR would yield a resolution of ~1 RPM. 

Figure 38: LOFT-REACTION Angular Velocity 
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Figure 38 above also displays the angular velocity curve that we obtained directly from the low 

frequency portion of the magnitude acceleration waveform.  That acceleration is largely due to the 

centripetal acceleration generated by the rotation of the ball. 

We can extract the angular velocity f from the centripetal acceleration Ac, as follows: 

   
  

 
 

   

 
                       

  √
  

 
 

The revolution rate f in RPMs is then 

  
 

  
          

During the LOFT segment, it directly indicates the centripetal acceleration, since the ball is in free fall 

during that time.  Figure 38 reveals an approximately 5% discrepancy between the angular velocity we 

extracted from the tilt response and that obtained from the angular velocity curve.  Ideally those two 

curves should more closely match, and the author has yet to adequately account for the discrepancy. 

5.5.4 Instantaneous Linear Velocity (Ball  Speed) 

Keeping in mind that any increase in angular velocity produces a corresponding decrease in linear 

velocity, we can now determine the deceleration of the ball from the change in instantaneous angular 

velocity.  That determination then allows us to develop an equation that produces the linear velocity vi 

for each sample period i of the waveform.  

Recall that distance is the integral of velocity with respect to time.  In the case of a sampled system, that 

relationship is given by the summation 

  ∑                                    (   
 

  
)  

   

   

 

Recall the assumption that the kinetic energy K of the ball remains constant from release to pin impact, 

                   

If we let Ki be the kinetic energy of the ball during sample time i, then 

   
 

 
(  

     
 ) 

Combining the above two equations yields 
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 ) 

Solving for vi, we get 

   √(  
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 )) 
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For constant energy, the above equation assumes that friction acts solely to transfer energy from linear 

kinetic energy to angular kinetic energy.  We can now obtain an expression for each linear velocity vi in 

terms of the initial linear velocity v0.  Substituting into the summation yields 

  ∑√   
      

    
   

 

   

    

We can now develop a converging iterative solution for v0, and then generate the remaining vi values 

from v0.  To start the iteration, we need an initial “seed” value for v0.  We know that D = 60 feet, and an 

appropriate first guess is the average linear velocity vave, which we found earlier, thus 

        
 

  
 

  

  
 

The final value for v0 must be greater than vave, since the ball slows down after release.  Evaluating the 

summation with vave results in a value D' < 60.  We can then use D' to arrive at the next guess, as follows 

  
     

       

 
 

The term (60 - D’)/T represents the error in the average linear velocity distributed across each sample 

point.  The adjustment to v0 adds/subtracts that discrepancy to create the next value for v0.  Iteration 

continues in this fashion (guess, calculate, adjust), until the difference 60 – D’ falls within an acceptable 

error margin, at which point we have found the true initial linear velocity v0.  We can then find the linear 

velocities for each sample point i by plugging the values for v0, 0, and i into 

   √  
   (  

    
 ) 

Figure 39 shows a plot of the change in linear velocity with respect to time, from the above calculations. 

Figure 39: Instantaneous Linear Velocity 



 

106 
 

5.5.5 Distance 

We can now use the instantaneous linear velocity to find the distance the ball covered during each 

sample period.  We can then calculate the location (relative to the foul line) of every point between 

release and pin impact, enabling us find the distance the ball was lofted, locate each revolution relative 

to the foul line, and relate the linear and angular velocities of the ball with respect to distance. 

The distance Dk that the ball has travelled at any time point k since release at the foul line is given by 

   ∑    

   

   

                                    
 

  
  

Now that we can cross-reference sample points with lane distance, we can easily find the loft distance, 

as well as the location of each revolution on the lane.  Those revolution locations (the angular velocity 

relative to lane distance) reveal where the ball begins to experience significant angular acceleration (the 

angular velocity begins to increase).  That distance is called the break point of the ball, and the break 

point moves as the lane oil distribution changes during the course of a bowling session. 

5.5.6 Loft Height and Distance 

Since we previously found the time stamps for the loft impacts, it is an easy matter to now get the 

distance the ball flew in the air past the foul line before it first hit the lane.  If tR is the time of release 

and tL1 is the time of the first loft impact, we can also calculate the loft height from the “time of flight” of 

the ball after release using the equation for projectile height, 

  
 

 
         

                                              

There will be some uncertainty here, as we will not be able discern how high above the lane the ball was 

released, without some additional analysis of the release waveform.  But this should at least provide a 

good first approximation. 

5.5.7 Coefficient of Friction 

A bowling ball generally skids the entire length of the lane, and thus it experiences sliding kinetic friction 

between the ball and the lane the entire time.  We can recover the coefficient of kinetic friction from 

the previous calculations.  Under the assumptions, the force due to kinetic friction is the only force 

acting between the ball and the lane, and that force acts solely to transfer linear kinetic energy to 

angular kinetic energy.  Since the changes in angular and linear velocity for each sample are known, we 

can find the frictional force required to generate those changes. 

Since we’re assuming that the kinetic frictional force is the only input of any consequence to the system, 

we can rewrite the standard equation for work as 

       

Solving for the force due to friction, we get 
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We need the change in kinetic energy that the frictional force generated, over the distance the ball 

travelled while that force was being applied.  For any sample point i, the frictional force Fi acting during 

i is given by 
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Note that we can use either the change in angular kinetic energy, or the change in linear kinetic energy 

to find the kinetic frictional force.  We can then obtain the coefficient of kinetic friction i between the 

ball and the lane for any sample point i from 

   
   

  
                                            

Combining the equations, we get 
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Figure 40 shows a graph of the coefficient of kinetic friction relative to distance from the foul line.  The 

graph reveals the limitations of our assumption that the ball experienced no loss of kinetic energy due to 

the other forces in the system.  Although the values for  are reasonable in the latter third of the graph, 

It is unlikely that  is so close to zero for the first 35 feet of the lane - typical minimum values for  are 

0.05 – 0.1 in that area.  Given that the ball is rotating rapidly while skidding down the lane, there is 

certainly a loss due to friction.  Also, the sudden drop off in the last 4-5 feet is the result of the FIR filter 

causing the angular velocity curve to roll off in the region close to the IMPACT segment.  Those 

limitations, along with how to address them, will be discussed in Section 5.6. 

 

 
Figure 40: Coefficient of Friction 
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5.6 Assumptions and Error Analysis 
Throughout the presentation of the raw data analysis, and the derivations of the bowling metric 

calculations, we have relied on some very basic assumptions.  This section presents those analysis 

assumptions in greater detail, along with an assessment of their possible error contributions.  The 

author presented a similar analysis and summary in his first paper, and the following analysis borrows 

from that previous discussion. 

5.6.1 Distance 

We have assumed that the ball travels 60 feet - the distance from the center of the foul line to the 

center of the head pin.  The bowler normally releases the ball close to the foul line, and the first pin the 

ball encounters is the head pin (at least on the first ball of any frame).  Let us take a closer look at what 

those assumptions really mean. 

 The ball is released at the foul line:  Generally, the bowler releases the ball at, or just beyond, 

the foul line.  If the bowler releases the ball beyond the foul line, the distance the ball travels is 

shorter than 60 feet, and the calculated velocity will be less than the actual velocity.    Since the 

bowler’s feet must stay completely behind the foul line in order to legally deliver the ball, the 

distance they can reach beyond the foul line is limited to 12-18” at release of the ball. 

Conversely, if the bowler releases the ball behind the foul line, the distance the ball travels is 

greater than 60 feet, and the calculated velocity will be greater than the actual velocity.  

Releasing the ball behind the foul line is usually the result of a noticeable lapse in execution on 

the bowler's part (dropping the ball, releasing the ball early, or stopping short of the foul line). 

The nominal margin of error at the point of release is estimated to be 6” to 18” beyond the foul 

line, which introduces an error in the distance the ball travels of -12”. 

 The ball hits the head pin at a fixed location: At the other end of the lane, the ball can hit the 

headpin in different spots - head on, or on either side.  A pin is 4.75" in diameter at the height at 

which the ball contacts it, and the center of the pin is located 60' ±½" from the foul line.  A 

bowling ball is nominally 8.55" in diameter.  Assuming the ball is released with its center over 

the foul line and it hits the head pin dead center, it must have travelled 59' 5" to 59' 6" from the 

point of release.  If the ball barely grazes the right or left side of the head pin, then the ball 

traveled 59' 9" to 59’ 10".  A solid pocket hit (the goal of any potential strike delivery) falls 

halfway between those two ranges, so the expected distance from the foul line that the initial 

head pin impact occurs is 59' 8”.  Therefore, the error introduced in hitting the head pin is -4" 

 The ball takes the shortest path from the foul line to the head pin: In reality, the ball is rolled 

with some amount of hook, and is released from some place other than the center of the lane, 

and is initially directed somewhat toward the right gutter (for a right-handed bowler).  If the ball 

were thrown from the outside edge of the right gutter in a straight line 45-50 feet down the 

lane, and then suddenly hooked straight toward the pocket, it would travel an extra 7/8".  At the 

other extreme, if the ball were released at the left gutter, and traced a regular arc to the right 

gutter at 30 feet, and then back to the head pin, it would travel an extra 6".  This is an extreme 

amount of hook, but will be factored into the error budget as ±3". 
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 The ball and pins each have fixed diameters: The ABC maintains tight control over the allowed 

dimensions of the ball and the pins.  The ball has a nominal diameter of 8.545 ±0.045", resulting 

in a nominal circumference of 26.855 ±0.141". The diameter of the ball contributes a negligible 

error.  At the height that the ball strikes a bowling pin, the pin must have a nominal diameter of 

4.766 ±0.031".  That value is also an insignificant contribution to the error calculations. 

Combining the three significant errors (at the foul line, at the pins, and from the path of the ball), yields 

a total of approximately -13” to -19” of error in the distance the ball travels.  For a nominal distance of 

60 feet, the total error works out to be -1.81% to -2.64%.  For a ball thrown at 15 mph, this error will 

manifest itself as an increase in the calculated average velocity from 15.27 mph to 15.40 mph. 

In the final RevMetrix application, the bowler could input their normal release point as a configuration 

parameter.  Then, for each ball thrown, they would indicate the approximate board where the ball was 

released, the extreme right (or left) board that the ball crossed on its path to the pins, and the board the 

ball was on at the time of impact.  The RevMetrix application would then utilize this information in its 

velocity calculations.  The margin of error in the distance the ball travelled would likely be reduced to 

less than 6", increasing the accuracy of the calculation to within 0.1 mph (an error of about 0.7%). 

5.6.2 Time 

Another assumption is that the microprocessor's clock is accurate.  The smaRTClock is used to time 

stamp the raw data samples, and that clock is based on a 32.768 kHz watch crystal with an error over its 

operational temperature range of no more than ±200 ppm (0.02%), or 600 s over a 3-second shot, 

which is an insignificant error contribution. 

5.6.3 SenseModule Position, Alignment, and Calibration 

The position and alignment of the SenseModule within the finger hole can each have a significant impact 

on the acceleration readings, and thus on the calculations that are derived from those readings.  

Further, the ADXL345 introduces some additional alignment considerations of its own. 

A fixed or known depth of the SenseModule within the finger hole is crucial to deriving accurate angular 

velocity calculations from the magnitude angular acceleration readings.  The centripetal acceleration 

that the ADXL345 experiences is related to its radius of rotation, which is not the radius of the ball, but 

rather, the offset of the ADXL345 from the center of the ball, and/or the actual axis of rotation.  In the 

final round of data collection conducted for this paper, the ADXL345 was located 1.475” below the 

surface of the ball, putting it at a distance of 2.80” from the center of the ball, thus r = 2.80” for the 

angular velocity calculations. 

The pitch of the finger hole also comes into play, as the holes drilled in a bowling ball are not necessarily 

directed toward the center of the ball, but are pitched in such a way as to aid the bowler in applying lift 

to the ball (finger holes pitched toward the palm, and thumbhole pitched away from the palm).  Also, 

bowling balls are routinely drilled to introduce a predictable dynamic imbalance in the ball, intended to 

manipulate the ball’s moment of inertia, and either resist or enhance the onset of hook in the ball.  Such 

drilling patterns shift the radius of gyration of the ball away from its center of mass. 
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The SenseModule does not yet have a case to secure it within the finger hole.  For the data collected for 

this project, the SM was secured to the bottom of the finger insert with tape.  As such, the finger insert 

transferred some of the forces it experienced during approach and release to the SM.  It is also likely 

that the higher frequency noise imposed on the REACTION segment waveform is due to vibration and 

excess movement transferred to the SM from the movement of the module and the finger insert. 

In order for the SenseModule to provide consistent and repeatable results, it must be positioned and 

aligned within the finger hole in a consistent and repeatable manner.  Thus, a case must be developed 

that can be secured in the bottom of the finger hole which will then fix the depth and rotational 

alignment of the SM for a particular bowling ball.  With such a case, the SM could then be calibrated for 

that ball, with a known alignment in the ball – as shown in Figure 25. 

5.6.4 External Forces and Friction 

The major assumption we’ve made is that the frictional force between the ball and the lane is the only 

force of any significance that acts on the ball following release.  Losses due to noise, vibration, 

aerodynamic drag, and torque applied to the rotational plane of the ball are considered negligible.  A 

further assumption is that the force due to kinetic friction acts on the ball in such a way as to efficiently 

transfer its linear kinetic energy to angular kinetic energy. 

The ball is released with an initial linear velocity that exceeds the ball's angular velocity.  That is, the ball 

travels further during one revolution of the ball than one circumference of the ball.  This difference 

causes the ball to skid (slide).  Also, generally speaking, the axis of rotation of the ball is neither parallel 

to the surface, nor is it normal to the direction of the lane.  The force due to friction causes the ball to 

resolve those differences, slowing the ball down, while increasing its angular velocity, and causing the 

ball to hook.  That resolution continues to occur until such time as the ball is no longer skidding (has 

rolled out), or the ball has completely traversed the lane and entered the pit. 

 The ball is always slowing down after it is released: The force due to friction causes the ball to 
translate linear kinetic energy to angular kinetic energy, until such time as the resolution 
(rollout) point is reached.  If the ball reaches rollout, both the angular and linear velocities 
decrease.  Therefore, the linear velocity is always continuously and monotonically decreasing. 

 The angular velocity is always increasing: The angular velocity of the ball will continuously and 
monotonically increase until the rollout point is reached, at which time the angular velocity also 
starts to decrease in a continuous and monotonic fashion, along with the linear velocity.  It is 
possible to detect roll out by observing the angular velocity of the ball near the pins.  The ball 
has rolled out if the angular velocity has begun to decrease, in which case, the linear velocity of 
the ball can be directly deduced, since it must travel 27" (one circumference of the ball) for 
every revolution of the ball. 

 Perfect transfer from linear kinetic energy to angular kinetic energy occurs: Actually this is not 
the case, but the amount of transfer can be detected in the change in angular velocity between 
each revolution of the ball.  Since the kinetic frictional force is the only force acting on the ball, it 
will be directly related to the amount of change in the angular velocity.  The actual unaccounted 
for losses due to friction result from heating of the ball and/or the lane, noise generation, 
vibration, inelastic deformation of the ball and lane, and torque applied to rotating the axis of 
the ball normal to the direction of travel. 
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If the ball rolls out, it is possible to directly observe the effects of rolling friction, since the linear velocity 

is directly related to the angular velocity, and the drop in kinetic energy of the ball can then be 

measured.  While the ball is skidding, the actual losses due to friction are very probably some constant 

fraction (percentage) of the change in angular momentum, i.e., 90% of the change in linear momentum 

is transferred to angular momentum, 10% is given up as heat, noise, etc.  The exact percentage is not yet 

known, and it probably varies for each type of ball, but with additional research, it should be possible to 

place an upper and lower bound on the frictional losses. 

5.7 Waveform Analysis Future Work 
Although the SenseModule is now fully functional, in that it currently operates in a fully autonomous 

mode, there is still much work to do.  The future work for the SM has already been proposed earlier in 

the paper, but there is also much additional work that must be done on the data analysis, algorithm 

development, and validation and verification fronts. 

5.7.1 Bowling Metric Accuracy 

Although extensive work has been done to develop the bowling metric extraction algorithms, little has 

been done to verify the accuracy of their output.  The author has used standard video analysis to verify 

that the average linear velocity, the revolution count, and the angular velocity calculations are 

approximately correct, within the limitations of that method of analysis.  However, video analysis, at 30 

fps, does not provide the requisite temporal resolution necessary to evaluate the instantaneous linear 

and angular velocity calculations, nor the distance calculations. 

The author has used the same measurement techniques as with the first paper.  With markers applied at 

known distances on the lane, and additional markers applied to the ball each 60 of rotation, multiple 

shots have been simultaneously captured with the SenseModule and recorded on a digital camcorder. 

For an average ball speed of 15 mph (22 fps), the ball travels about 9” per frame, more at the start, less 

at the pins.  The error margin is twice that value (the first and last video frames), so that the best error 

margin is ±2.5% (or about 0.4 mph), and the error margin increases as the velocity increases.  A similar 

scenario exists when counting revolutions. For a rotation rate of 6 Hz (360 RPMs), the resolution is 72 

degrees of rotation at 30 fps (or about 0.2 revolutions).  Again, the error margin increases with 

increasing RPMs.  In either case, it is pointless to try to assess the instantaneous linear and angular 

velocities without using some form of high-speed video camera, with at least 10 times the frame rate. 

Recall that the REVMETRIX system is intended to provide the bowler with metrics useful for evaluating 

their execution, provide information useful for evaluating the reaction of the bowling ball to the lane 

condition, as well as provide insight into changing lane conditions. 

As such, it is more important that the REVMETRIX system provide consistent, repeatable results, rather 

than absolutely accurate results.  Ideally, if the bowler executes their delivery the same way on two 

different shots, and the ball responds identically to that stimulus, then the system should report similar 

results.  On the other hand, if the bowler executes consecutive shots with a 5% difference in release 

RPMs between them, the system should report a 5% difference in release RPMs. 
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At some point, it will be necessary to verify the metrics that the REVMETRIX system produces.  The 

current options have changed little in the time since the author first addressed this problem a dozen 

years ago: 

 Contact the USBC to use their automated bowling robot (E.A.R.L.) to throw repeated shots (with 

a bowling ball equipped with a SenseModule) at known linear and angular velocities, along with 

predetermined axis turn and tilt angles [11]. 

 Contact Brunswick to obtain time on their "Throbot" machine, similar to USBC’s E.A.R.L. [12]. 

 Visit a CATS-instrumented facility and correlate the REVMETRIX analysis results against the CATS 

findings [13]. 

5.7.2 Approach Characteristics 

No attempt has been made to analyze the acceleration data that the SenseModule collects during the 

bowler’s approach.  Since the ball is not rotating during approach, that data should reveal the position of 

the ball in the bowler’s stance, as well as the motion of the bowling ball as the bowler delivers the ball 

to the lane.  That approach data could reveal the speed of the bowler’s delivery, the relative height of 

their back swing, and their possible release point above the lane.  Extensive data collection and analysis 

research, along with high speed video comparisons would be necessary in order to create a quantitative 

analysis of the bowler’s approach characteristics.  On the other hand, that data could be used to develop 

a qualitative approach “signature” that could reveal the consistencies/inconsistencies in the bowler’s 

approach, and the effects of changes that the bowler is attempting to make in their approach. 

5.7.3 Release Characteristics 

As part of the approach data, the SenseModule also captures the bowler’s release of the bowling ball.  

Recall that it is during release that the bowler applies lift and turn to the ball, as well as applies the 

impetus to loft the ball, and give the ball its initial linear and angular velocities.  It is the release motion 

that determines how the ball will react once it hits the lane.  It should also be possible to quantify the 

release motion and create a release “signature” for the bowler to inspect.  This would also be helpful in 

identifying variability in the bowler’s release, as well as to provide feedback into any adjustments they 

might be attempting to make to their release.  In addition, if it is possible to obtain the orientation of 

the ball at the time of release, it would then be possible to identify the axis turn at release, which would 

reveal the initial direction of rotation with respect to the lane (direction of travel). 

5.7.4 Axis Tilt Angle 

The phases and amplitudes of the separate 3-axis tilt responses should reveal the tilt of the axis of 

rotation as the ball rolls down the lane.  The tilt response traces a sinusoidal waveform with maximum 

amplitude of ± 1 g.   If the axis of rotation is tilted away from parallel with the lane surface, that 

amplitude will drop in direct proportion to the sine of the angle of tilt.  The 3-axis tilt response can be 

used to reveal how the tilt of the ball’s rotational axis changes over time during the REACTION segment.  
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Section VI: Summary 

The SenseModule developed for this paper is a prototype, believed to be the first of its kind (low cost, 

low power, low mass, unobtrusive, autonomous operation).  As such, this has been a project of broad 

scope and reach.  The SenseModule was first developed as a data collection platform in order to 

discover the content and morphology of the waveforms it was intended to capture.  It took several 

iterations of hardware and embedded software before the SM achieved autonomous operation. 

At that point, the process of collecting and analyzing data began, with most of the analysis performed 

using MATLAB.  Once the morphology of the raw acceleration data waveforms became apparent, 

wavelet decomposition/reconstruction was identified as the best method for determining the 

boundaries of the various morphological segments in the data.  It was then possible to implement an 

algorithm for automatically dividing the waveform into its constituent segments (APPROACH, LOFT, 

REACTION, and IMPACT). 

Each segment can be characterized by its frequency content and its shape (how the signal evolves over 

time).  Certain segments lend themselves to analysis by finite impulse response (FIR) filtering, others are 

better viewed through the lens that Wavelet Theory provides, and yet others require a combination of 

both techniques. 

The APPROACH segment is best analyzed with wavelets, as it has a low-frequency, non-cyclical shape 

that evolves from DC to perhaps a single 0.5 Hz cycle generated by the bowler’s arm swing, and 

culminates in a sudden increase in angular velocity as the bowler applies lift and turn to the ball. 

The LOFT segment immediately follows release and is also best analyzed with wavelets, as it is 

dominated by flat DC content, along with one or more brief significant spikes that result from the ball 

impacting the lane (and possibly bouncing) after being lofted during release.  The DC portion of the LOFT 

segment supplies an isolated view of the centripetal acceleration of the ball as the ball is rotating in free 

fall during loft. 

The REACTION segment commences once the ball remains in continuous contact with the lane, and is 

dominated by a noisy sinusoidal frequency chirp superimposed upon a significant DC component 

generated by the centripetal acceleration of the ball.  The frequency chirp is the result of the tilt aspect 

of the ADXL345, and gives a direct indication of the orientation of the SenseModule with respect to the 

lane surface as the ball rolls down the lane.  The REACTION segment is best analyzed using FIR 

techniques to filter out the low frequency acceleration component and high frequency noise from the 

tilt response.  It is that filtering of the REACTION segment that allows us to extract the changing angular 

velocity of the ball.  The angular acceleration component can also be used for that same purpose. 

The IMPACT segment begins with the ball’s initial encounter with the pins, and continues through the 

ball falling off the end of the lane into the pit.  This segment is characterized by a continued tilt response 

imposed on a low frequency component, but with numerous significant spikes due to pin impacts, and 

greater noise content, also due to the ball driving through the pins.  Both the linear and angular 

velocities of the ball slow down significantly and the segment terminates with a period of free fall (flat 
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response) as the ball falls into the pit.  Analysis of the IMPACT segment requires both FIR and wavelet 

techniques, due to its varied signal content. 

Relying on an assumption of energy conservation, we developed automated algorithms that isolate the 

angular velocity tilt response from the REACTION segment, and then used the angular acceleration 

response of the LOFT segment to create a combined LOFT-REACTION instantaneous angular velocity 

waveform.  From there, we extracted the individual revolutions of the ball, and inferred the 

instantaneous linear velocity from the changes in angular velocity using the efficient transfer of linear 

kinetic energy to angular kinetic energy.  Finding the instantaneous linear velocity required the 

development of an iterative converging algorithm that compares the expected distance the ball 

travelled with the distance that results from the linear velocity “guess” we had just calculated. 

Having found the instantaneous linear velocity of the ball, it then became possible to deduce the 

location of the ball with respect to the foul line, and thus the distance the ball was lofted.  We could 

then also locate each revolution with respect to the foul line, which then allowed us to establish the 

break point of the ball.  Finally, we were also able to derive the kinetic frictional force from the changes 

in either the angular or linear velocities. 

The author has taken great liberty in assuming that no energy is lost during the transfer of energy from 

the ball’s translation to the ball’s rotation.  The analysis algorithms presented here are just a first 

attempt at showing what is ultimately possible from having collected the 3-axis accelerometer data from 

a sensor positioned underneath a finger hole in a bowling ball. 

The author has yet to resolve the discrepancy that arose between the angular velocity extracted from 

the tilt response waveform and the corresponding angular velocity extracted from the isolated angular 

acceleration component of the combined LOFT-IMPACT segment.  The ADXL345’s response during the 

LOFT segment is the result of the isolated centripetal acceleration and should lead directly to the 

angular velocity of the ball.  The peak-valley and valley-peak tilt response should also lead directly to the 

angular velocity of the ball for each half-rotation.  However, those results disagree by about 5%, and 

that error seems to be out of line with the accuracy we should be able to expect from the system. 

It must be stated that all of the waveforms used for development of the MATLAB segmentation, 

extraction, and analysis algorithms have originated with the author's use of the SenseModule.  As such, 

data collection with the SenseModule across a wider range of bowlers and bowling styles is still 

necessary, which will undoubtedly result in further development and refinement of the algorithms 

presented in this paper.  Eventually, formal testing must be conducted in order to verify and validate the 

accuracy of the analysis algorithms.  

Admittedly, there is much additional SenseModule refinement, raw data collection, waveform analysis, 

and algorithm development that has yet to be accomplished, and objective verification and validation 

must also be performed across the entire REVMETRIX system.  However, the project, to this point, has 

reached its goal of developing an autonomous, unobtrusive in situ bowling ball sensor module, coupled 

with an automated analysis system that provides quantitative feedback to the bowler about their 

execution, as well as the reaction of the ball once they have released it to the lane. 
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APPENDIX A: LANE LAYOUT AND AMBIENT LIGHT WAVEFORM
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Figure 41a: Lane Layout and Overhead Lighting 
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APPENDIX B: SMARTDOT AND SENSEMODULE LIGHT AND IMPACT COMPARISON 
Figure 42 is a typical SMARTDOT module graph.  The original SMARTDOT module from [1] collected ambient 

light data (TSL251 LTV converter) and impacts (piezoelectric film).  The SenseModule also collects 

ambient light data (TSL13T LTV converter), along with 3-axis acceleration data, and Figure 43 is a typical 

SenseModule graph, with impact locations added in red.  Although the ambient light data was collected 

16 years apart, using two separate module designs with similar LTV converters, but completely different 

technologies for impact detection, the light and impact data are remarkably similar. 
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APPENDIX C: COMMODULE COMMUNICATION PROTOCOLS 

ComModule Detection Protocol 
A means for exchanging information with the SenseModule is required in order to program the module, 

configure the module, and upload sensor data from the module.  The TSL13 light-to-voltage converter 

also serves as the receiver for the SM communication circuit.  The sensor module receives serial 

commands and data via the TSL13, and transmits serial responses via the transmit LED. The bowler will 

initiate a communication sequence with the sensor module by placing the ComModule over the finger 

hole, generally while the module is in standby mode.  Thus, the act of placing the communication 

module over the finger hole causes the module to go through the standard wake-up sequence.  The 

ComModule detection protocol is given in the following sequence of steps, which describes the timing 

diagram shown in Figure 44. 

A) The bowler places the ComModule over the finger hole containing the sensor module, 

blocking ambient light from reaching the start-up circuit. 

B) The minimum start-up dark-time is reached (nominally 500 ms), and the P enters reset. 

C) The P exits reset and begins executing its self-configuration code. 

D) As part of its embedded program, the P first “assumes” that it is receiving a 

transmission from the CM.  It applies power to the TSL13 through P0.6, and configures 

comparator CP1 to detect positive edges (which are the leading edges of logic ‘0’ bits) 

generated by the TSL13.  The CP1+ input is P1.0 and the CP1- input is P1.1. 

SLEEPMODE P RESET EXECUTING CODE 2) P Status 

1) OP521 Light Level 

4) P P0.7: TRX LED 

 

P 

 

A/N 

 

C/D 

5) P CP0 Output 

 

C 

 

C/D 

3) P P0.6: TSL13 VDD 

B C E A F G H I J K D 

Figure 44: ComModule Detection Timing Diagram 
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E) After the P is configured, it transmits the “probe” character sequence, indicated by ‘P’ 

in line 4 of Figure 44.  The detailed byte transmission timing diagram is given in Figure 

46. 

F) The P clears any transient interrupts generated at CP1 due to applying power to the 

TSL13, and then enables the CP1 positive edge interrupt in order to detect the leading 

edges of logic ‘0’ bits transmitted by the CM.  The detailed byte reception timing 

diagram is given in Figure 45. 

G) At the conclusion of the probe transmission, the P switches to receive mode, and waits 

for a command character sequence (‘C’ in line 5) from the CM. 

H) If the command sequence starts within the allotted time (nominally 100 ms), the P 

receives the command sequence.  If the P does not detect a command sequence 

within the allotted time, it issues the probe sequence up to two more times.  If the 

presence of the CM is not detected, the P switches to sampling mode. 

I) At the end of the command (detected via a terminating character or a time out value), 

the P checks the validity of the command through a checksum test.  If the checksum is 

valid, the P waits for the communications module to enter receive mode (typically one 

character time). 

J) The P then transmits an “ACK” (acknowledge) for a valid checksum, or a “NAK” 

(negative acknowledge (invalid checksum), switches to receive mode, and waits for the 

next transmission from the CM. 

K)  If the P received a valid command, communication then proceeds between the two 

modules according to the specific command protocol.  If an invalid command was 

received, the P waits to receive the retransmission of the command.  
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Serial Reception Protocol (Infrared iRTZ UART) 
The TSL13 light-to-voltage converter doubles as the infrared serial receiver.  Its output pin is tied to P1.0, 

configured as the positive (CP1+) input of comparator CP1, while the negative (CP1-) input is tied to a 

voltage divider set to a level appropriate for detecting light pulses in a dark ambient environment.  The 

serial reception scheme utilizes a modified UART protocol, with one START bit, 8 DATA bits, and 1 STOP 

bit.  An inverted Return-To-Zero (iRTZ) format is used, with reception occurring under ambient dark 

conditions, where each “space” (0 bit) is transmitted as a light pulse consisting of a rising edge, a 

minimum duration (1 s), and a falling edge, while the absence of light is considered to be the “mark” (1 

bit) level. 

Two P resources are used to implement the byte reception function: comparator CP1 is configured as 

the START bit detector and an auto-reload timer is configured as the bit slice timer (BST).  The CP1 

interrupt detects the leading (rising) edge of the START bit, and the BST interrupt signals the individual 

bit slice times.  Before the anticipated reception of each byte, the BST is halted, the BST interrupt is 

disabled, the BST value is initialized to 1.5 bit times, while the BST auto-reload value is initialized to 1 bit 

time.  Thus, once the BST is enabled at the rising edge of the START bit, all BST interrupts occur in the 

middle of their respective bit slice times.  The BST performs the reception of bits. 

By checking for bits in the middle of the bit time, the serial receiver can overcome differences between 

the baud rate generators of the transmitter and the receiver due to temperature drift, calibration error, 

and time-base resolution errors.  This scheme will accommodate combined errors of up to 5% per bit 

time – accumulating a 47.5% drift across the 9.5 bit times it takes to receive the 8 DATA bits and the 

single STOP bit.  The error margin can be increased to 6% per bit time if 2 STOP bit times are 

guaranteed to be transmitted between bytes. 

At each BST overflow, the BST ISR reads the CP1 rising edge flag.  If the flag is set (1), then a rising edge 

was detected during the preceding bit time, and a ‘0’ bit is placed at the corresponding position in the 

serial byte being assembled.  If no rising edge was detected, a 1 bit is placed in the serial byte bit 

position.  After 8 data bits have been received, the next BST overflow captures the STOP bit as a flag.  

After the STOP bit time, the BST ISR disables the BST interrupt, and a flag is set to indicate that a byte 

has been received.  Any routine that processes the received byte can then check the validity of the STOP 

bit. 

Figure 45 presents the timing diagram for the serial reception scheme. 

UART receiver settings: 

START bit: 1 

DATA bits: 8 

PARITY bit: NONE 

STOP bits: 2 (allows for additional inter-character process time) 

BAUD rate: 28,800 kbaud, individual bit time = 34.72 s. 

Data transfer rate: ~2500 bytes/sec (assuming 11 bit frame) 
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A) Before serial reception can begin, the P must supply power to the TSL13 via P0.6. 

B) After the TSL13 output settles (~100 s), the P enables the CP1 rising edge interrupt.  This 

should occur in an ambient dark condition, as measured with the TSL13.  The CP1 interrupt 

remains enabled from point A to point D. 

C) The first rising edge at CP1+ causes a CP1 interrupt – the rising edge of the START bit.  The CP1 

interrupt service routine (ISR) starts the BST and enables the BST ISR.  The BST interrupt and 

timer remain enabled from point C to point W. 

D) The CP1 ISR disables the CP1 interrupt. 

E) Even with the CP1 interrupt disabled, rising edges are still detected and the CP1 rising edge flag 

continues to be set accordingly (points E, G, I, K, M, O, Q, S). 

F) At each BST overflow, the BST ISR checks the CP1 rising edge flag and stores the appropriate 

value (a ‘0’ bit if a rising edge occurred during the preceding bit time, and ‘1’ bit otherwise) in 

the byte being assembled.  This occurs for each of the 8 DATA bits at points F, H, J, L, N, P, R, and 

T.  The ISR also clears the CP1 rising edge flag for the next bit time. 

U) After the 8 DATA bits have been collected, the next BST overflow is for STOP bit detection.  

There should be no rising edge transition during this bit time. 

V) The BST ISR sets the STOP bit flag – ‘1’ for a valid STOP bit (no CP1 rising edge), ‘0’ otherwise. 

W) The BST ISR disables the BST interrupt, and sets a flag indicating that a byte has been received. 

X) If another byte is anticipated, the process repeats from step B, otherwise, the P removes 

power from the TSL13.  

 

3) P P1.0: CP1+ 

5) Bit Slice (P Timer  ISR) 
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Figure 45: Serial Reception Timing Diagram 
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Serial Transmission Protocol (Infrared iRTZ UART) 
Since the SenseModule can transmit the entire contents of its sample memory (128 kbytes) during one 

request, it is beneficial for the SM to transmit at a much higher rate than it can receive.  The ComModule 

must then have an infrared reception circuit that can accommodate the faster SM transmission rate. 

The serial transmission scheme utilizes the modified UART protocol given for the serial reception mode, 

with one START bit, 8 DATA bits, and 2 STOP bits.  An inverted Return-To-Zero (iRTZ) format is used, with 

transmission occurring under ambient dark conditions, where each “space” (0 bit) is transmitted as a 

light pulse consisting of a rising edge, a minimum duration (50% duty cycle), and a falling edge, while the 

absence of light is considered to be the “mark”,  or logic ‘1’, bit level.  The light pulses are 50% of the bit 

time, which reduces the overall current required during serial transmission. 

A single P timer is used to implement the byte transmission function - an auto-reload timer configured 

as the bit slice timer (BST).  The BST triggers the start of each bit time.  The BST ISR then outputs the 

next bit.  If it is a ‘0’, the ISR turns the transmit LED on, and then turns the LED off after a fixed delay 

time.  If the bit is a ‘1’, there is nothing to do, since the LED is already off. 

Since the P does not have to contend with multiple tasks when it is transmitting data, the transmission 

of serial data is accomplished with a simple “bit-banging” scheme, with the BST trigerring the bit times, 

and the byte transmission routine simply waiting for the BST overflows.  By utilizing an optimized “bit-

banging” technique, it is possible to implement a SenseModule transmission rate of up to 115.2 kbaud. 

Figure 46 presents the timing diagram for the serial transmission mode. 

UART transmitter settings: 

START bit: 1 

DATA bits: 8 

PARITY bit: NONE 

STOP bits: 2 (allows for additional inter-character process time) 

BAUD rate: 28,800 to 115.3 kbaud, individual bit time = 8.68 s to 34.72 s. 

Data transfer rate: ~2500 to ~10,000 bytes/sec (assuming 11 bit frame) 
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Figure 46: Serial Transmission Timing Diagram 

A) SenseModule initiates transmission by passing the byte to be transmitted to the low-level 

transmit routine, enabling the Bit Slice Timer (BST) overflow interrupt, preloading the BST to 

immediately overflow, and then starting the BST.  The BST ISR issues the START bit (a logic 0) by 

turning on the the current source (IREF0) at P0.7. 

B) After a fixed delay, the BST ISR terminates the START bit (returning to “dark”).  The active duty 

cycle of the transmit LED is 50% when issuing a light pulse, and is 0% when issuing a dark pulse. 

C) At the next BST overflow, the BST ISR issues the first DATA bit (bit 0) – a light pulse for a logic 0, 

or remains dark for a logic 1.  DATA bits are issued at points C, E, G, I, K, M, O, and Q) 

D) The BST ISR terminates a ‘0’ DATA bit by shutting off current to the transmit LED - points C, F, H, 

J, L, N, P, and R). 

R) The BST ISR that issues the last DATA bit also sets the BST for two consecutive bit times, which 

will cause two STOP bits to be issued following termination of the last DATA bit, and the 

expiration of the last DATA bit time – points R, S, and T. 

U) At the next BST overflow, the BST ISR halts the BST timer, disables the BST, resets the transmit 

variables for the next byte, and sets a flag to indicate that the data byte has been transmitted.  

Note that the current drive (IREF0) for the transmit LED has already been turned off by this time. 
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APPENDIX D: TYPICAL MATLAB OUTPUT METRICS 
 

Enter data set name ('mmddyy-nnnnnn'): '082910-00009' 

  

  Light RELEASE detected at Light index 231, TS = 11.872192 secs 

  All time stamps adjusted relative to Light RELEASE TS 

 

  RELEASE impact at ADXL index 687, TS = 0.023420 secs 

  All time stamps adjusted to ADXL RELEASE point 

 

  PIN impact at ADXL index 1248, TS = 2.739363 secs 

  Average ball speed = 14.934 mph (21.903 fps) 

 

  LOFT impact 1 at ADXL index 729, TS = 0.205086 secs 

  Approximate distance = 4.49 ft 

 

  LOFT impact 2 at ADXL index 744, TS = 0.278331 secs 

  Approximate distance = 6.10 ft 

 

  Release angular velocity(FIR): 357.9 rpms 

  Impact angular velocity(FIR):  423.7 rpms 

  Total Revolutions(FIR):         15.0 

 

  Average linear velocity:  14.93 mph 

  Release linear velocity:  15.00 mph 

  Impact linear velocity:   14.57 mph 

 

  Loft Distance:      54 in (4.51 ft) 

  Reaction Distance:  76 in (6.34 ft) 
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APPENDIX E: TYPICAL RAW DATA WAVEFORMS 
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Ball Record: 00002 
Result: X (light pocket) 

Time: 17:44:20  8-29-2010 
Ts:  15.742 s,  ADXL Fs:  204.876 Hz,  Light Fs:  120.467 Hz 
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Ball Record: 00003 
Result: X (pocket) 

Time: 17:45:05  8-29-2010 
Ts:  14.279 s,  ADXL Fs:  204.834 Hz,  Light Fs:  120.496 Hz 
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Figure 47: Ball Record 00002 (typical waveform) 

Figure 48: Ball Record 00003 (typical waveform) 
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Ball Record: 00004 
Result: False Activation (ball return) 

Time: 17:45:28  8-29-2010 
Ts:  7.079 s,  ADXL Fs:  204.834 Hz,  Light Fs:  120.496 Hz 
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Ball Record: 00005 
Result: X (pocket) 

Time: 17:46:02  8-29-2010 
Ts:  17.086 sec,  ADXL Fs:  204.834 Hz,  Light Fs:  120.496 Hz 
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Figure 49: Ball Record 00004 (ball return activation) 

Figure 50: Ball Record 00005 (typical waveform) 
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Ball Record: 00006 
Result: X (pulled pocket) 

Time: 17:46:49  8-29-2010 
Ts:  16.600 s,   ADXL Fs:  204.834 Hz,  Light Fs:  120.496 Hz 
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Ball Record: 00007 
Result: 7-10 (light pocket) 
Time: 17:47:38  8-29-2010 

Ts:  14.891 s,  ADXL Fs:  204.834 Hz,  Light Fs:  120.496 Hz 
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Figure 51: Ball Record 00006 (typical waveform) 

Figure 52: Ball Record 00007 (typical waveform) 
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Ball Record: 00008 
Result: X (light pocket) 

Time: 17:49:02  8-29-2010 
Ts:  16.358 s,  ADXL Fs:  204.792 Hz,  Light Fs:  120.481 Hz 
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Ball Record: 00009 
Result: 10-pin (light pocket) 
Time: 17:49:53  8-29-2010 

Ts:   15.015 sec,  ADXL Fs:  204.792 Hz,  Light Fs:  120.481 Hz 
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Figure 53: Ball Record 00008 (typical waveform) 

Figure 54: Ball Record 00009 (typical waveform) 
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Ball Record: 00010 
Result: False Activation (ball return) 

Time: 17:50:17  8-29-2010 
Ts:  6.837 sec,  ADXL Fs:  204.792 Hz,  Light Fs:  120.481 Hz 

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

G
's

 

seconds 

Ball Record: 00011 
Result: 10 (light pocket) 

Time: 17:51:21  8-29-2010 
Ts:  15.016 s,  ADXL Fs:  204.792 Hz,  Light Fs:  120.467 Hz 
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Figure 55: Ball Record 00010 (ball return activation) 

Figure 56: Ball Record 00011 (typical waveform) 
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Ball Record: 00012 
Result: X (pocket) 

Time: 17:53:00  8-29-2010 
Total Sample Time:             15.748 sec 
ADXL Sample Frequency: 204.792 Hz 
Light Sample Frequency:   120.481 Hz 
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Ball Record: 00013 
Result: 2-4-5-8 (light) 

Time: 17:53:49  8-29-2010 
Ts:  18.191 s,  ADXL Fs:  204.750 Hz,  Light Fs:  120.496 Hz 

 X-axis

 Y-axis

 Z-axis

 Light

Figure 58: Ball Record 00013 (typical waveform) 

Figure 57: Ball Record 00012 (typical waveform) 
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Ball Record: 00014 
Result: X (pocket) 

Time: 17:55:31  8-29-2010 
Ts:  15.260 s,  ADXL Fs:  204.792 Hz,  Light Fs:  120.496 Hz 
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Ball Record: 00015 
Result: 4-7 (high) 

Time: 17:56:13  8-29-2010 
Ts:  15.018 s,  ADXL Fs:  204.750 Hz,  Light Fs:   120.496 Hz 
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Figure 60: Ball Record 00015 (typical waveform) 

Figure 59: Ball Record 00014 (typical waveform) 
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Ball Record: 00016 
Result: X (pocket) 

Time: 17:58:13  8-29-2010 
Ts:  14.408 s,  ADXL Fs:  204.750 Hz,  Light Fs:  120.496 Hz 
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Ball Record: 00017 
Result: False Activation (ball return) 

Time: 17:58:37  8-29-2010 
Ts:  5.495 s,  ADXL Fs:  204.750 Hz,  Light Fs:  120.438 Hz 
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Figure 62: Ball Record 00017 (ball return activation) 

Figure 61: Ball Record 00016 (typical waveform) 



 

133 
 

 

 

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

G
's

 

seconds 

Ball Record: 00019 
Result: False Activation (ball return) 

Time: 17:59:21  8-29-2010 
Ts:  7.083 s,  ADXL Fs:  204.750 Hz,  Light Fs:  120.496 Hz 
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Figure 64: Ball Record 00019 (ball return activation) 
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Ball Record: 00018 
Result: X ( light pocket) 

Time: 17:58:55  8-29-2010 
Ts:  15.508 s,  ADXL Fs:  204.750 Hz,  Light Fs:  120.467 Hz 
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Figure 63: Ball Record 00018 (typical waveform) 


