

The Pennsylvania State University

The Graduate School

Capital College

A ROLL DOWN THE LANE
MEASURING BOWLING BALL DYNAMICS FROM THE INSIDE

INTRODUCING THE REVMETRIX SYSTEM

A Master’s Project and Paper in Engineering Science
by

Donald J. Hake II

©2014 Donald J. Hake II

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Engineering

October 2014

The Master’s paper of Donald J. Hake II was reviewed and approved* by the following:

Sedig Agili

Professor of Electrical Engineering

Program Coordinator, Master of Engineering in Engineering Science

Eugene Boman

Associate Professor of Mathematics

Aldo Morales

Professor of Electrical Engineering

Linda Null

Associate Professor of Computer Science

Seth Wolpert

Associate Professor of Electrical Engineering

Paper Advisor

*Signatures are on file in the Graduate School.

 iii

ABSTRACT

This paper summarizes the design, development, and testing of a performance analysis system
intended to directly capture the various dynamic forces that a bowling ball experiences, from
within the bowling ball itself. The sensor module at the heart of the system is designed to reside
in the ball, at the bottom of a finger hole, underneath a finger insert. The sensing capabilities of
this in situ module enable it to not only capture the reaction of the ball as it rolls down the lane,
but also to record the motion of the ball as the bowler goes through their1 approach, the
impetus the ball experiences as the bowler applies “lift” and “turn” to it as part of their release
motion, the ball’s reaction to being lofted as the result of release, as well as the reaction of the
ball as it drives through the pins and into the pit.

The sensor module presented in this paper is a greatly updated and enhanced version of the
SMARTDOT module, originally presented in the author’s Computer Science Master’s thesis, “A
Performance Analysis System for the Sport of Bowling” (Penn State Harrisburg, May 2002). The
system presented in that thesis captured the changing ambient light level at the sensor module
as the ball rotated under the overhead lighting, and then later inferred the angular velocity of
the ball from that waveform. That sensing methodology was utilized (at the time the research
was conducted) due to the relatively inexpensive nature of light sensing technology compared
to the cost of using an onboard accelerometer to directly measure the ball’s motion.

In the interim, however, micro-machined accelerometers have undergone a dramatic drop in
size, cost, and power requirements, while their functionality and overall performance have
increased considerably. In addition, highly configurable “system-on-a-chip” microprocessors
have become readily available that offer tremendous improvements to the original SMARTDOT
module’s capabilities, while also reducing the overall production cost of the module.

As such, this paper presents a next-generation sensor module design based upon a state-of-the-
art system-on-a-chip microprocessor that interfaces with a 3-axis accelerometer, ambient light
sensors, and expanded non-volatile memory for data storage and retrieval. The sensor module
has been designed from the outset to be an inexpensive, consumer-based product that is user
installable and replaceable. Careful consideration has also been given to creating a module
whose presence and operation is completely transparent and unobtrusive to the user, with
additional consideration applied to the module’s physical design so that its presence in the ball
has minimal impact on the ball’s static and dynamic balance.

This presentation includes the design and implementation of a fully functional in situ sensor
module: the physical design constraints; the hardware and sensor requirements, schematic, and
PCB layout; the microprocessor configuration; the embedded software requirements, design,
and implementation; as well as a summary of the module’s performance under real-world
conditions.

Breakdown and analysis of the raw data waveforms is included, along with a presentation of the
preliminary algorithm development for reliably extracting and deriving a set of useful bowling
metrics from the collected sensor data. The resulting raw data filtering and waveform analysis
algorithms rely heavily on the application of Fast Fourier Transforms in combination with
techniques taken from Wavelet Theory.

1 In the absence of a standard set of gender-neutral pronouns, the author uses "they", "them", and "their"
as the gender-neutral forms of "s/he", "him/her", and "his/her" throughout the document.

iv

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

Section I: Introduction and Background ... 1

1.1 Statement of the Problem .. 1

1.2 SenseModule Installation ... 4

1.3 A Summary of the Physics of Bowling ... 5

1.4 Scope of the Paper/Project .. 7

Section II: SenseModule Hardware Requirements and Implementation 8

2.1 Physical and Functional Requirements ... 8

2.1.1 Physical Design Constraints .. 8

2.1.2 Sensors .. 9

2.1.3 Microprocessor .. 10

2.1.4 External Memory ... 10

2.1.5 Communications .. 11

2.2 SenseModule Component Selection ... 11

2.3 SenseModule Schematic Diagram ... 13

2.4 SenseModule PCB Layout ... 14

2.5 SenseModule Theory of Operation ... 15

2.5.1 Start-Up Circuit .. 15

2.5.2 Light Sensing Circuit (IC3 – TSL13) .. 18

2.5.3 Accelerometer circuit (IC4 – ADXL345) ... 19

2.5.4 Microprocessor (IC1 – 8051F921) ... 20

2.5.5 System Clock .. 20

2.5.6 Low Power Modes .. 20

2.5.7 Real Time Clock (RTC) ... 21

2.5.8 Port Pins... 21

2.5.9 Comparators .. 21

2.5.10 Analog-to-Digital Converter (ADC0) .. 21

2.5.11 I2C Bus .. 21

2.5.12 Timers .. 21

2.5.13 Interrupts ... 21

v

2.6 EEPROM (IC2 – 24FC1025) ... 21

Section III: SenseModule Embedded Software ... 23

3.1 SenseModule Use Cases ... 23

3.2 Software Requirements ... 23

3.2.1 Module Configuration .. 23

3.2.2 Power Management ... 24

3.2.3 Time Measurement .. 24

3.2.4 Ball Record Database (EEPROM) ... 24

3.2.5 Command Processing ... 25

3.2.6 Infrared Serial UART (iRTZ Format) ... 25

3.2.7 Sensor Sampling ... 25

3.2.8 Sample Storage .. 25

3.2.9 Wakeup Validation ... 26

3.2.10 Approach and Release Detection .. 26

3.2.11 Shutdown Detection .. 27

3.3 EEPROM Memory Map .. 27

3.3.1 EEPROM Layout ... 28

3.3.2 Configuration Page ... 30

3.3.3 Ball Pointer Page .. 31

3.3.4 Ball Record Pointer ... 31

3.3.5 Ball Record ... 32

3.3.6 Ball Page .. 33

3.3.7 Light Page .. 34

3.3.8 ADXL Page .. 35

3.3.9 ADXL Sample .. 36

3.4 MainLoop .. 37

3.5 ResetMode Process.. 40

3.6 SleepMode Process .. 42

3.7 WakeUpMode Process ... 44

3.8 CommandMode Process .. 46

3.8.1 Read EEPROM Page Command ... 46

3.8.2 Read Ball Record Command ... 46

vi

3.8.3 Write EEPROM Page Command .. 46

3.8.4 Set Defaults Command ... 46

3.9 ApproachMode Process ... 48

3.9.1 ProcessSampleClockEvent (SampleClockEF) .. 49

3.9.2 ProcessLightSamplesEvent (LightSamplesEF) .. 49

3.9.3 ProcessADXLWatermarkEvent (ADXLWatermarkEF) ... 49

3.9.4 ProcessADXLSampleEvent (ADXLSampleEF) .. 50

3.9.5 ProcessI2CControlEvent (all EFs) ... 50

3.9.6 ProcessSamplePageEvent (I2C mutex, I2C retry).. 50

3.9.7 ProcessReadADXLPageEvent (ADXLReadPageEF) .. 50

3.10 SampleMode Process ... 52

3.10.1 ProcessSampleClockEvent (SampleClockEF) .. 53

3.10.2 ProcessLightSamplesEvent (LightSamplesEF) .. 53

3.10.3 ProcessADXLWatermarkEvent (ADXLWatermarkEF) ... 53

3.10.4 ProcessADXLSampleEvent (ADXLSampleEF) .. 53

3.10.5 ProcessI2CControlEvent (all EFs) ... 53

3.10.6 ProcessSamplePageEvent (I2C mutex, I2C retry) .. 54

3.10.7 ProcessReadADXLPageEvent (ADXLReadPageEF) .. 54

3.10.8 ProcessWriteLightPageEvent (LightWritePageEF) ... 54

3.10.9 ProcessWriteADXLPageEvent (ADXLWritePageEF) .. 55

3.11 CleanUpMode Process ... 57

3.11.1 CommandMode Clean Up .. 57

3.11.2 SampleMode Clean Up ... 57

3.12 Sampling Data Flow ... 60

3.12.1 Ambient Light Sampling and Storage .. 60

3.12.2 Acceleration Sampling and Storage .. 62

3.12.3 Sample Page Transfer and Storage ... 64

Section IV: SenseModule Performance and Raw Data Collection .. 66

4.1 Physical Constraints ... 67

4.2 SenseModule Hardware ... 68

4.2.1 Start-Up Circuit .. 69

4.2.2 Microprocessor (8051F921) .. 69

vii

4.2.3 EEPROM (24FC1025) .. 69

4.2.4 Accelerometer (ADXL345) .. 70

4.2.5 Ambient Light Sensor (TSL13) ... 70

4.2.6 Infrared Transmitter (IREF0 and LED).. 70

4.3 Raw Data Waveforms .. 71

4.3.1 Typical Waveform Regions ... 72

4.3.2 False Activation Waveforms ... 73

4.4 Automatic Functions .. 75

4.4.1 Valid Activation Detection .. 75

4.4.2 Valid Release Detection .. 77

4.4.3 Shutdown Detection .. 80

4.5 SenseModule Future Work ... 81

4.5.1 SenseModule Hardware ... 81

4.5.2 Embedded Software ... 83

4.6 SenseModule Development Summary and Conclusions .. 84

Section V: Waveform Deconstruction, Filtering, and Analysis .. 85

5.1 Acceleration Components .. 86

5.2 Raw Data Waveform Segments .. 88

5.3 Automated Segmentation .. 89

5.4 Automated Waveform Deconstruction... 94

5.4.1 Waveform Deconstruction using Wavelet Decomposition 95

5.4.2 Tilt Response .. 96

5.4.3 Angular Acceleration and Tilt Response .. 97

5.4.4 Tilt Response Interpolation and Extrapolation .. 98

5.5 Waveform Calculations .. 99

5.5.1 Average Ball Speed ... 102

5.5.2 Revolution Period and Count .. 102

5.5.3 Instantaneous Angular Velocity (RPMs) .. 103

5.5.4 Instantaneous Linear Velocity (Ball Speed) .. 104

5.5.5 Distance ... 106

5.5.6 Loft Height and Distance .. 106

5.5.7 Coefficient of Friction ... 106

viii

5.6 Assumptions and Error Analysis ... 108

5.6.1 Distance ... 108

5.6.2 Time ... 109

5.6.3 SenseModule Position, Alignment, and Calibration ... 109

5.6.4 External Forces and Friction ... 110

5.7 Waveform Analysis Future Work .. 111

5.7.1 Bowling Metric Accuracy .. 111

5.7.2 Approach Characteristics .. 112

5.7.3 Release Characteristics ... 112

5.7.4 Axis Tilt Angle ... 112

Section VI: Summary ... 113

REFERENCES ... 115

Books and Literature ... 115

Software Packages .. 115

Hardware Components ... 115

Prototype Services .. 115

APPENDIX A: LANE LAYOUT AND AMBIENT LIGHT WAVEFORM .. 116

APPENDIX B: SMARTDOT AND SENSEMODULE LIGHT AND IMPACT COMPARISON 117

APPENDIX C: COMMODULE COMMUNICATION PROTOCOLS ... 118

ComModule Detection Protocol... 118

Serial Reception Protocol (Infrared iRTZ UART) .. 120

Serial Transmission Protocol (Infrared iRTZ UART) ... 122

APPENDIX D: TYPICAL MATLAB OUTPUT METRICS .. 124

APPENDIX E: TYPICAL RAW DATA WAVEFORMS ... 125

ix

LIST OF FIGURES
Figure 1: SenseModule Cut-Away View .. 4

Figure 2: SenseModule Schematic Diagram.. 13

Figure 3: SenseModule PCB Layout (Top) ... 14

Figure 4: SenseModule PCB Layout (Bottom) ... 14

Figure 5: SenseModule Serial EEPROM Memory Map .. 29

Figure 6: SenseModule MainLoop .. 39

Figure 7: ResetMode Process .. 41

Figure 8: SleepMode Process ... 43

Figure 9: WakeUpMode Process .. 45

Figure 10: CommandMode Process ... 47

Figure 11: ApproachMode Process .. 51

Figure 12: SampleMode Process .. 56

Figure 13: CleanUpMode Process .. 59

Figure 14: Light Sampling Data Flow Diagram .. 61

Figure 15: Acceleration Sampling Data Flow Diagram .. 63

Figure 16: Sample Page Transfer Data Flow Diagram ... 65

Figure 17: SenseModule Prototype .. 68

Figure 18: Typical Raw Data Waveform ... 71

Figure 19: Raw Data Waveform Regions .. 72

Figure 20: Subway (False) Activation ... 73

Figure 21: Ball Return (False) Activation .. 74

Figure 22: Expanded ApproachMode Waveform ... 76

Figure 23: Expanded Release Region ... 78

Figure 24: Impact and Shutdown Regions .. 81

Figure 25: SenseModule Axis Orientation .. 86

Figure 26: SenseModule Tilt Orientation .. 87

Figure 27: Ambient Light Waveform .. 89

Figure 28: Interpolated Light Spectrum ... 90

Figure 29: 1st-Level Haar Details (Impacts) .. 91

Figure 30: ADXL 3-Axis Segment Boundaries (Impacts) .. 92

Figure 31: Raw Data Segments .. 93

Figure 32: REACTION Segment .. 94

Figure 33: 3rd & 5th-Level Bior6.8 Reconstruction ... 95

Figure 34: REACTION Segment Filtered Tilt Response .. 96

Figure 35: REACTION Angular Acceleration and Tilt Response.. 97

Figure 36: Extrapolated LOFT-REACTION Tilt Response .. 98

Figure 37: REACTION Revolution Location ... 102

Figure 38: LOFT-REACTION Angular Velocity .. 103

Figure 39: Instantaneous Linear Velocity ... 105

Figure 40: Coefficient of Friction.. 107

file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266382
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266383
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266384
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266385
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266390
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266392
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266393
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266394
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266395
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266396
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266397
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266398
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266399
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266400
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266401
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266402
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266403
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266404
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266405
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266406
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266407
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266408
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266409
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266410
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266411
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266412
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266413
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266414
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266415
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266416
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266417
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266418
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266419
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266420
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266421

x

Figure 41: Lane Layout and Ambient Light Waveform .. 116

Figure 42: Typical Smartdot Ambient Light Waveform with Impacts .. 117

Figure 43: Typical SenseModule Ambient Light Waveform with Impacts 117

Figure 44: ComModule Detection Timing Diagram ... 118

Figure 45: Serial Reception Timing Diagram ... 121

Figure 46: Serial Transmission Timing Diagram .. 123

Figure 47: Ball Record 00002 (typical waveform) ... 125

Figure 48: Ball Record 00003 (typical waveform) ... 125

Figure 49: Ball Record 00004 (ball return activation) ... 126

Figure 50: Ball Record 00005 (typical waveform) ... 126

Figure 51: Ball Record 00006 (typical waveform) ... 127

Figure 52: Ball Record 00007 (typical waveform) ... 127

Figure 53: Ball Record 00008 (typical waveform) ... 128

Figure 54: Ball Record 00009 (typical waveform) ... 128

Figure 55: Ball Record 00010 (ball return activation) ... 129

Figure 56: Ball Record 00011 (typical waveform) ... 129

Figure 57: Ball Record 00012 (typical waveform) ... 130

Figure 58: Ball Record 00013 (typical waveform) ... 130

Figure 59: Ball Record 00014 (typical waveform) ... 131

Figure 60: Ball Record 00015 (typical waveform) ... 131

Figure 61: Ball Record 00016 (typical waveform) ... 132

Figure 62: Ball Record 00017 (ball return activation) ... 132

Figure 63: Ball Record 00018 (typical waveform) ... 133

Figure 64: Ball Record 00019 (ball return activation) ... 133

file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266422
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266423
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266424
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266425
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266426
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266428
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266429
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266430
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266431
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266432
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266433
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266434
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266435
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266436
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266437
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266438
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266439
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266440
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266441
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266442
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266443
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266444
file:///D:/Docs100/My%20Documents/MEng%20ESci%20Degree/ENGR594/Hake_MEngESci_paper(10-5-14,%20final%20submission).docx%23_Toc400266445

xi

LIST OF TABLES
Table 1: EEPROM Map ... 28

Table 2: Configuration Page Contents .. 30

Table 3: Ball Pointer Page Structure... 31

Table 4: Ball Record Pointer Structure ... 31

Table 5: Ball Record Structure ... 32

Table 6: Ball Page Structure ... 33

Table 7: Ball Page Header Structure... 33

Table 8: Light Page Structure ... 34

Table 9: Light Page Header Structure ... 34

Table 10: ADXL Page Structure .. 35

Table 11: ADXL Page Header Structure .. 35

Table 12: ADXL Sample Structure (compressed) .. 36

Table 13: SenseModule Dimensions ... 67

Table 14: SenseModule Current Draw .. 68

Table 15: False Activation Detection .. 77

Table 16: False Release Detection Results ... 80

xii

ACKNOWLEDGEMENTS

It has been 16 years since I started graduate work at Penn State Harrisburg, and a dozen years

since I graduated with my Master’s in Computer Science. Little could I have anticipated that

taking COMP 432 (Advanced C++) from Dr. Bui over the Summer of 1998 would lead me on this

extensive journey at Penn State Harrisburg – 80 credits, two Master’s degrees, the opportunity

to teach a couple of courses, and the chance to meet such wonderful faculty, in both the

Computer Science and the Electrical Engineering departments. I owe a debt of gratitude that

can’t be repaid, for this experience has truly been transformative. Through these last 24 years

(seems appropriate that it should be an integral power of 2), I have been able to explore what it

is that truly makes me joyful – the opportunity and the knowledge to pursue my own curiosities,

combined with the chance to interact with both faculty and students in such a fulfilling way.

My gratitude goes out to the following faculty members at Penn State Harrisburg, who have

been nothing but enlightening, challenging, instructive, and inspirational to me throughout my

extended academic adventure. Thank you for sharing your knowledge, your teaching skills, for

opening up a world of possibilities for me, and for your constant encouragement and support.

Dr. Aldo Morales: For showing me the wonders of digital signal processing, FFTs, and especially

Wavelet theory, which still seems so mathemagical to me, at times.

Dr. Eugene (Bud) Boman: For teaching me the matrix theory that underpins so much of the FFT,

Wavelet theory, and all of their calculations.

Dr. Seth Wolpert: For not only being willing to be my thesis advisor and suffer through

reviewing a second iteration of the physics of bowling, but also for showing me the wonders of

neural networks, and the intricacies behind VLSI design and solid state manufacturing.

Dr. Linda Null: For also agreeing to put herself through reading and reviewing a second 100+

page treatise on this topic, as well as being a good friend and mentor.

Dr. Thang Bui: For sharing his extraordinary insight into evolutionary computation and genetic

algorithms. And for the line, “This is Computer Science – we talk about it, we don’t do it.”

Dr. Sukmoon Chang: For extending my knowledge of artificial intelligence.

Dr. Jeremy Blum: For introducing me to the methods for mobile application development, as

well as providing me with a new model of decorum for deftly handling those inevitable

improvisational moments that arise in the classroom with both humor and grace.

My thanks also go out to Becton Dickinson Diagnostic Systems for fully funding this degree, and

to all of the managers that have supported me along the way: Scott Shindledecker, Cheryl Abel,

Rick Altekruse, and Vince Federico.

And my heartfelt gratitude goes out to my lovely, loving, understanding, and patient wife Sandy,

who for the second (and likely not the last) time in our marriage has suffered through my

extended periods of isolation in my office, bowling balls bouncing off furniture in the basement,

and my borderline(?) OCD fascination with building the SenseModule, and my boundless gEEky

excitement at my first site of the 3-axis acceleration waveforms.

1

Section I: Introduction and Background

1.1 Statement of the Problem2
The research presented in this paper is a continuation, refinement, and extension of the

author’s previous development of the original SMARTDOT system presented in his Master’s

Thesis, “A Performance Analysis System for the Sport of Bowling” [1].

Bowling is often considered a game of accuracy, but it is actually a game of errors. The goal of

any experienced bowler is to find the optimal combination of style, equipment, and lane

adjustments that affords the greatest margin of error while still allowing the bowler to

consistently deliver the ball to the pocket with sufficient force, angle, and "action" to generate

strikes. Success with this strategy requires a combination of factors: the bowler's natural talent

and ability, refined by a generous amount of coaching and practice; experience with "reading"

lane conditions and making adjustments to the inevitable changes in those conditions; and the

selection and use of the proper equipment, e.g., picking the right bowling ball for the conditions.

Bowling balls are available in a variety of weights, balances, hardnesses, and surfaces. Those

four variables, combined with the bowler’s style, determine when and how much the ball hooks,

and how hard it hits the pins. The bowler selects a bowling ball from their collection based on

his or her bowling style and the current lane conditions, which are determined by the lane oil

distribution.

As a bowling ball rolls down a lane, a great deal of friction is generated between the ball and the

lane surface. The linear velocity of the ball can approach 20 mph, while the angular velocity can

easily exceed 300 rpms. To limit the wear on the lane, as well as to make the lane “playable”,

special lane-dressing oil is regularly applied to the lane. Lane oil is generally applied with a

varying density both across and down the lane which affects the "playability" of the lane,

making it easier or more challenging for the bowler to consistently deliver the ball to the strike

pocket.

As bowling balls repeatedly roll through the lane oil, they redistribute that oil over time,

changing the oil pattern as a bowling session progresses. The effects of that change can be

quite noticeable, sudden, and dramatic. A primary concern for all bowlers is to quickly identify

those changes, and correctly adjust to that changing oil pattern.

The bowling ball is the bowler's “oil sensor” for determining where the lane oil is (and isn't), as

well as how that oil distribution is changing. Based solely on observing the ball's reaction to the

lane, the bowler adjusts to the ever-changing lane condition by drawing upon their past

experience with the results of various adjustments made under similar circumstances. Those

adjustments usually involve lateral changes in the starting location on the approach and/or the

target on the lane, an increase or decrease in the speed of the ball, and/or a switch to a ball that

hooks more, or less, or sooner, or later, etc. The bowler may also opt to change the amount of

2 Portions have been excerpted and/or paraphrased from the Abstract and Problem Statement from [1],
with appropriate edits and updates applied.

2

turn, lift, and/or loft they apply to the ball during release, with the intention of changing the

amount the ball hooks.

If the bowler does not release the ball with consistent amounts of speed, turn, lift, and loft (the

variables that directly affect the ball's reaction with the lane), it is particularly difficult to

accurately assess the condition of the lanes, let alone how that condition is changing. It has

always been difficult to accurately quantify a bowler's relative level of consistency. It has been

equally difficult to quantify and compare the relative performance of different types of bowling

balls.

Current technology offers precious little to the serious bowler in search of ways to analyze and

improve their game. All of the existing methods currently available to the bowler rely on

acquiring some type of "external" view of the ball (from the bowler's perspective) as it rolls

down the lane. The goal of such systems is to quantify the various factors (release velocity,

rotation rate, ball loft distance, etc.) that contribute to the ball's reaction and, ultimately, to the

bowler's performance. However, not only are those externally-based methods time-consuming,

inconvenient, and/or expensive to install and use, but they each have their own inherent

limitations resulting from their external view of the ball.

As of this writing, no devices of the nature described in the current literature have been brought

to market with regards to bowling [1], [4], [7]. Between the inconvenience, expense, and

narrow availability of external (instrumented lane) solutions, and the dearth of internal

solutions, it remains particularly difficult for a bowler to accurately and adequately assess the

various impacts that changes in bowling style and bowling equipment have on their game.

Without such timely and consistent feedback on changes in wrist and hand position, arm swing,

stance, and grip, as well as changes in equipment (ball type, weight, balance, and/or surface),

the bowler generally participates in a guessing game when assessing the effectiveness and

usefulness of any of these considerations.

At the time of the development of the first SMARTDOT sensor module, solid-state accelerometers

were prohibitively expensive for use in a low-priced (sub-$50.00 MSRP) consumer electronics

device. As such, the original SMARTDOT module relied on a far less expensive solution based on

an ambient light sensor, and a piezoelectric film sensor that doubled as the start-up circuit and

the impact sensor. The ambient light sensor was used to detect the varying light level at the

sensor module as the ball rolled down the lane, while the module’s microprocessor sampled the

light waveform and stored the resulting sensor data in external EEPROM for later analysis.

Subsequent analysis of the captured ultimately waveform revealed that it was difficult to

reliably deduce the instantaneous angular velocity of the ball from the sampled light data.

There was also no practical method to verify that the extraction techniques that the author

proposed and eventually implemented had accurately reconstructed the motion of the ball.

Figure 41 in Appendix A (page 116) depicts the layout of a typical bowling lane, including the

overhead lighting sources, and the generalized ambient light waveform that both the original

SMARTDOT module and the next-generation module collect.

3

With the passage of time, sufficiently inexpensive, 3-axis, micro-machined accelerometers have

become readily available within a price range that makes them practical for inclusion in the

sensor module application. Also, mixed-signal semiconductor technology has advanced to the

point where small, low-power system-on-a-chip microprocessors are now available that greatly

reduce the component count (and cost), while adding a great deal of functionality and

processing power to the application.

This paper summarizes the design and development of a greatly updated and enhanced version

of the original SMARTDOT module, utilizing an 8-bit system-on-a-chip microprocessor, a 3-axis

micro-machined accelerometer, a light level sensor, and an ambient light-based start-up circuit.

The enhanced capabilities of this next-generation sensor module allow it to capture an

"internal" view (from the bowling ball's perspective) of the dynamics that the ball experiences

throughout its journey to the pins. The new sensor module not only captures the interaction of

the ball with the lane surface as it rolls down the lane, but also captures the motion of the ball

as the bowler goes through their approach, the impetus they apply to the ball at the time of

release, and the ball’s reaction as it drives through the pins.

The new sensor module is part of the overall REVMETRIX system, consisting of three components:

 The SenseModule (SM): An in situ sensor and data collection module that resides in the

ball at the bottom of a finger hole, underneath a finger insert, as shown in Figure 1.

 The ComModule (CM): A wireless communications module that serves as the interface

between the SM and the RevMetrix application. Currently, the ComModule connects to

the host platform (a PC) via a USB cable, but could be connected wirelessly in the future.

 The RevMetrix application (RMApp): A multi-platform (PC, tablet, smart phone) software

application that uploads, archives, analyzes, and displays the data captured by the

SenseModule and retrieved through the ComModule.

In the interest of brevity, the terms SenseModule and SM, ComModule and CM, and

RevMetrixApp and RMApp are used interchangeably throughout the paper.

4

1.2 SenseModule Installation
Figure 1 shows a cut-away view of the REVMETRIX SenseModule, as installed in the bowling ball

underneath a finger insert in an existing finger hole. The case that will hold the SenseModule

and battery has not yet been designed, and is not shown.

C L

Finger

Insert

0.950"

0.975”

0.315"

1.35"

Light Sensor

(TSL13)

EEPROM

(24FC1025)

Printed Circuit

Board (PCB)

µP

(8051F921)

3V Lithium Battery

(CR2032)

Accelerometer

(ADXL345)

Transmit LED

Figure 1: SenseModule Cut-Away View

5

1.3 A Summary of the Physics of Bowling3
Bowlers attempt to make a bowling ball hook in order to generate more pin action. Industry

research has shown a direct correlation between a bowling ball’s angle of entry into the strike

pocket, and the chance of generating a strike [1]. During release, the bowler imparts an axis of

rotation to the ball that is turned and/or tilted away from normal, which is intended to make the

ball hook towards the pocket. It is the interaction of the linear and angular velocities of the ball

with the frictional force acting between the ball and the lane that causes the ball to hook.

In order to control the amount the ball hooks, the bowler releases the ball with various

combinations of speed, loft, lift, turn, and tilt. Those five terms are defined below:

1) Speed: The initial linear velocity of the ball as it leaves the bowler’s hand. The higher

the initial velocity, the less opportunity for the ball to hook, but the more energy the

ball can impart to the pins. The bowler varies the initial velocity of the ball by adjusting

the push-away height of the ball at the start of their approach, their approach speed,

and/or their arm swing speed.

2) Loft: The longitudinal distance the ball travels before making initial contact with the

lane. The longer the loft distance, the less opportunity the ball has to hook. The bowler

can control the loft distance through the release velocity and release point of the ball:

an earlier release directs the ball parallel to the lane surface; a later release directs the

ball upwards, away from the lane surface. For any given loft height, a higher release

velocity causes the ball to travel further before striking the lane.

3) Lift: Lift is the initial angular velocity that the bowler applies to the ball during release.

It causes the ball to begin rotating before hitting the lane. The more lift the bowler

applies during release, the higher the initial angular velocity of the ball. With the proper

axis turn and tilt, more lift increases the potential amount the ball will hook.

4) Turn: The amount that the ball’s axis of rotation is rotated away from normal

(orthogonal to the direction of travel). The ball will eventually hook toward the

direction that the axis of rotation is turned. The more the bowler turns the axis away

from normal (with respect to the direction of travel), the more potential the ball has to

hook. If the initial axis of rotation is normal to the initial direction of travel, and parallel

to the lane surface, the ball will not hook, except due to weight imbalances in the ball.

5) Tilt: The amount that the ball’s axis of rotation is rotated with the respect to the lane

surface. More tilt implies more “spin” – the extreme would be that the ball spins like a

top (the rotational axis is perpendicular to the lane surface). Increased axis tilt delays

the ball from hooking in the direction of the axis turn.

After the bowler releases the ball, the only external force of any significance that acts upon the

ball is the force due to friction generated between the ball and the lane (this force varies a great

3 Excerpted and/or paraphrased from Section 1.2 “Introduction to the Physics of Bowling” in [1], with
appropriate edits applied.

6

deal due to the variations in oil distribution on the lane). A bowler invariably releases a ball with

an initial linear velocity (speed) that is greater than that which would result from the ball's initial

angular velocity (lift). In other words, the distance the ball travels during one complete

revolution is greater than the circumference of the ball (the ball is skidding or sliding as it is also

rotating).

As long as the ball is skidding, friction acts to transfer some of the ball's linear momentum into

angular momentum, decreasing the linear velocity while increasing the angular velocity. Thus,

as the ball “revs up”, it slows down. If the linear and angular velocities completely resolve

themselves, the ball is no longer skidding (it has rolled out), and the frictional force now causes

the angular and linear velocities of the ball to decrease in direct proportion to each other [5].

There is also a significant internal dynamic force that acts upon the ball; the changing rotational

inertia of the ball due to imbalances in specially shaped weight blocks designed for just such a

purpose. Such weight blocks can delay or accelerate the reaction of the ball with the lane [6].

A small percentage of the ball's linear momentum is also lost due to wind resistance, and the

heat, noise, and vibration generated as the surfaces of the ball and the lane rub against each

other.

The 3-axis accelerometer and the ambient light sensor are used to capture the following forces

acting upon the ball:

1) The impetus the bowler applies to the ball, from the start of the approach to the moment

of release: the speed of the approach, the speed of the ball through the arm swing, the

lift, turn, and tilt the bowler applies to the ball during release.

2) The moment of release, the moment(s) of impact with the lanes, and the various impacts

with the pins.

3) The ball’s 3-axis angular velocity due to the frictional force between the ball and the lane

surface from its initial impact with the lane, to the time it falls into the pit at the end of

the lane.

By measuring the time between release and impact, and noting the duration of each revolution

of the bowling ball, it is possible to derive the angular velocity of the ball for each revolution,

and the energy necessary to induce this change in angular velocity. The average linear velocity

of the ball and the changes in the ball's angular velocity during the course of the shot can be

combined with certain assumptions regarding momentum and energy conservation and friction

to derive the instantaneous linear velocity and longitudinal location of the ball. Using the same

criteria, it is also possible to derive the varying frictional force between the ball and the lane.

The mathematical details of those calculations are presented in the authors’ original paper [1],

and have been included in the appendices of this paper.

7

1.4 Scope of the Paper/Project
The development of the SenseModule, the performance results, and the analysis of the collected

data is presented in the following sections:

 Section II presents the SenseModule design constraints, hardware requirements, and

module implementation.

 Section III presents the SenseModule embedded software requirements, design, and

implementation.

 Section IV presents the SenseModule performance results, including examples of the

collected sensor data.

 Section V presents the initial data analysis algorithm development, error analysis, along

with suggestions for future work.

 Section VI presents a summary of the entire project.

8

Section II: SenseModule Hardware Requirements and Implementation

The REVMETRIX system consists of a microprocessor-based data collection sensor module

referred to throughout this paper as the SenseModule (SM), which interacts with an external

wireless communications module referred to as the ComModule (CM). The SM transfers the raw

sensor data that it collects to the CM, which is connected to a smartphone, tablet, or PC for data

archival, analysis, and presentation by the RevMetrix application (RMApp).

The SenseModule is designed to collect accelerometer and ambient light data with a sufficient

granularity so that the RevMetrix application can provide accurate and meaningful analysis of

that data. As with the first version of the SMARTDOT sensor module, the key to the feasibility of

the system has been the initial development of the SenseModule. Thus, the initial design,

development, and implementation of the SenseModule have been directed towards collecting

that data so that an initial analysis of the data could be performed. This section discusses the

design assumptions, constraints, and capabilities of the SenseModule.

As far as the author has been able to discover, the manner in which the SenseModule captures

the data (autonomously, with an inexpensive module, from within an unaltered bowling ball)

has never before been accomplished, although it must be noted that this not the only time that

this data has been collected. The closest reference found in the literature was published within

two months after the conclusion of the testing performed for this paper. The “IMU” (Inertial

Measurement Unit) specified in [7] utilizes a 3-axis accelerometer and two rather expensive

angular-rate gyros, along with a wireless transmission unit. It is placed in a separate 1.25” hole,

drilled to a depth of ~2.5”, and such an installation could certainly impact the balance

characteristics of the ball. Additional references appear in the literature for “the first

instrumented bowling ball” [1] and to “performance analysis with an instrumented bowling ball”

[4] , but those instances rely on measurements obtained from bowling balls so highly altered

and weighed-down with force transducers as to be rendered unusable for normal play.

2.1 Physical and Functional Requirements

2.1.1 Physical Design Constraints

The SenseModule must conform to a varied collection of physical, economic, and electronic

constraints. These design constraints are similar to that of the original SMARTDOT module.

1) Transparent: The presence and operation of the SenseModule must not be apparent to

the bowler. The SM must start up, operate, and shut down automatically, without any

user intervention – the bowler should not be able to detect the presence of the SM, and

the operation of the SM should not impact the bowler’s normal routine in any way.

2) Small and light weight: The SenseModule must be sufficiently small enough that it can

be located at the bottom of a finger or thumb hole. It must also be as lightweight as

possible to minimize its impact on the static and/or dynamic balance of the ball.

9

Nominally, it should have a similar weight as any excess material that must be removed

from the finger hole in order to install the module.

3) Low cost: The SenseModule must be inexpensive relative to the cost of a state-of-the-

art bowling ball, since the bowler will likely need multiple SM’s, as it will be

inconvenient to switch a single SM between multiple bowling balls.

4) Low power: Since the SenseModule is battery powered, and the battery comprises a

significant fraction of the SM’s size and weight, the SM should be designed to draw

minimal current at all times. The SM must spend the vast majority of its time in a micro-

power standby mode, and have a means for automatically detecting the bowler’s

presence, release of the ball, and shutdown of sampling to conserve battery life.

5) Replaceable: Ideally, the SenseModule should be user-installable, and the battery

should be rechargeable and/or user-replaceable.

2.1.2 Sensors

The SenseModule must be able to sense the start-up condition, the motion of the ball while in

the bowler’s hand, the bowler’s release of the ball, the ball’s impact with the lane and the pins,

and the rotation of the ball. The SM must be able to accurately sense the passage of time, with

microsecond resolution, and record time-stamped digitized waveforms of the various sensors. It

must also automatically detect the presence of, and communicate with, the ComModule.

The original SMARTDOT module has two sensors: a piezoelectric film sensor used to detect start-

up/release and the ball’s impact with the lane and the pins; and an ambient light sensor used to

detect the moment the bowler released the ball, and then to infer the rotation of the ball

through the changes in the ambient light level, which only occur after release. The light sensor

also doubles as the infrared receiver for communication with the COMM wand.

The new SenseModule is based upon a 3-axis accelerometer, although the SM still has a light

sensor. With the inclusion of an accelerometer, the SM is able to directly sense the motion and

rotation of the ball and, by extension, certain movements of the ball during the bowler’s

approach and release. The accelerometer is also able to sense the ball’s impact with the lane

and the pins. The SM periodically samples the three axes of the accelerometer, and stores those

readings in non-volatile memory for later transfer to the ComModule via an infrared interface.

The ambient light sensor has been carried over from the original SMARTDOT module. It is used to

detect the presence of the bowler’s finger in the finger hole (and the presence of the CM), and

serves as the optical receiver for communications purposes. The SM also periodically samples

the light sensor and stores those readings along with the accelerometer data. As part of follow-

up research to the original paper, the ambient light data will be correlated with the

accelerometer data to ascertain the relative accuracy of the methods implemented in the

previous paper for inferring the motion of the ball from the captured ambient light waveform.

The inclusion of an accelerometer mostly supplants the function of the piezoelectric film sensor

used in the original SMARTDOT module. However, the piezo film also served as a passive start-up

10

sensor for the SMARTDOT module. Unfortunately, the accelerometer draws too much current to

be used in the start-up circuit. Therefore, a different method for sensing start-up has been

developed that eliminates the need for the piezo film sensor.

The new light-based start-up circuit indirectly detects that the bowler has placed their finger in

the finger hole (or placed the CM over the hole). Since the existing ambient light sensor also

draws too much current to remain constantly powered, the start-up circuit uses a separate, low-

cost photo-transistor as part of a micro-power circuit that continuously monitors the light level

reaching the SM. When the light level falls below a certain threshold for a given amount of

time, the start-up circuit, combined with a micro-power comparator on the microprocessor,

wakes up the rest of the SM. This new light-based start-up circuit draws less than 2 A of

current, and rejects the vast majority of spurious light pulses. It may eventually be possible to

combine the two light sensing circuits, but that was not a goal for this version of the module.

2.1.3 Microprocessor

Since the SenseModule must be small, low cost, and draw little current, a small form-factor, 8-

bit microprocessor made the most sense for this application. Since the development of the

original SMARTDOT module, small, low-cost, versatile, and powerful system-on-a-chip 8-bit

microprocessors have become readily available, and sufficiently inexpensive for this application.

Such microprocessors now contain comparators, analog-to-digital converters, built-in

programmable clock sources, on-chip non-volatile, in-system writeable flash memory, expanded

code memory and RAM, and many other functions.

Ideally, the microprocessor for the SM must possess the following qualities:

1) Small form factor
2) Low cost
3) Low power (whether in standby mode, idle mode, or while executing code)
4) Internal reset circuitry
5) Internally generated system clock (no external components required)
6) A micro-power real time clock function
7) On-board analog functions such as low-power comparators, a multi-channel ADC, a

voltage reference, programmable constant-current source, etc.
8) Configurable port pins
9) In-system circuit emulation and flash programming
10) Hardware support for serial EEPROM and serial communications
11) Sufficient on-board RAM for data capture buffers, serial communication buffers, etc.

2.1.4 External Memory

The SenseModule collects sample data from four sensor channels (the ambient light sensor, and

the three accelerometer axes), and must sample at a rate sufficient to accurately detect

transient occurrences such as the ball’s impact with the lane and impact with the pins. The

sample memory should also be large enough to accommodate all 12 possible first shots of each

frame (the first 9 frames, plus 3 possible shots in the 10th frame), and ideally at least one game’s

worth of data, a maximum of 21 shots (2 each in the first 9 frames, plus 3 in the 10th frame).

11

The memory must be non-volatile, and draw little current while not being accessed. It must also

easily interface to the microprocessor to limit the execution time (and battery power) spent on

accessing the memory.

2.1.5 Communications

The SenseModule captures the raw sensor data and stores it in external non-volatile memory

until such time as it can transfer that data to the ComModule. The transfer medium must be

wireless (non-contact) since the SM resides at the bottom of a finger hole. Given that the SM

already has an optical receiver, and requires just a single LED for transmission, the most cost-

effective method for the wireless transfer is via an optical interface (visible or infrared). The

communications requirement imposes additional response time challenges on the ambient light

sensor. Whereas the ambient light waveform may vary at a 10-20 Hz rate while the ball is

rolling, the ambient light sensor must also be fast enough to accept firmware updates of 4-8 KB

in a timely fashion (no more than a few seconds).

2.2 SenseModule Component Selection
Major component selection is presented below, along with a summary of each component.

Links to the manufacturer’s data sheets are provided in the bibliography. A theory of operation

for the overall SenseModule circuit, as well as for each of the individual sub-circuits of the SM

follows the schematic. The current schematic diagram for the SM is given in Figure 2 on the

following page. The layout of the printed circuit board (PCB) used to build the SenseModule

prototypes is shown in Figure 3 (top) and Figure 4 (bottom).

 Start-Up Phototransistor (T1): Optek Technology OP521 Phototransistor [27]
 Spectral Responsivity: 550-1060nm (25%), 910nm (peak)
 Operating Range: -25 to 85°C

 Microprocessor (IC1): Silicon Laboratories 8051F921 8-Bit Flash Microcontroller [23]

 Programmable internal oscillator, 3 to 24.5 MHz,  2% accuracy

 Real-Time Clock (smaRTClock w/32kHz crystal, 0.5 A supply current)
 On-chip debug circuitry for full-speed in-system debugging
 10-Bit 300 Ksps ADC, 15 single-ended or differential inputs

 Two, low-power (< 0.5 A) comparators, available even when P is stopped
 Programmable hysteresis and response time
 Configurable as interrupt or reset sources

 4352 bytes on-board data RAM (256 + 4KB XRAM)
 32 KB flash program memory, in-system programmable in 1024-byte sectors
 Four general purpose 16-bit counter/timers
 UART, SMBus (I2C), and SPI serial ports
 Supply Voltage: 0.9 – 3.6 volts (on-board DC-DC converter for 0.9 to 1.8 volts)
 Supply Current:

 4.1 mA at 25 MHz

 11 A at 32 kHz

 0.6 A in stop mode, w/smaRTClock enabled

 0.05 A w/smaRTClock off
 Operating Range: -40 to 85°C

12

 External Memory (IC2): Microchip 24FC1025 I2C Serial EEPROM (128 KB) [24]
 Clock Frequency (max): 1 MHz (400 kHz for VCC < 2.5V)
 Write Mode: 128-byte pages, 5 ms write cycle time (max)
 Supply Voltage: 1.8 - 5.5V

 Standby Current: 100 nA typical at 5.5V (1 A max over temp range)

 Supply Current (max): 400 A at 5.5V (read), 3 mA at 5.5V (write)
 Operating Range: -40 to 85°C

 Ambient Light Sensor (IC3): AMS TSL13T Light-To-Voltage Converter [26]
 Spectral Responsivity: 350-1020 nm (25%), 775nm (peak)

 Turn-On Time (0-100%): 40 s (typical)

 Rise Time (10-90%): 7.2 s (typical)

 Fall Time (10-90%): 6.8 s (typical)
 Supply Voltage: 2.7 - 5.5V

 Supply Current: 660 A at 3.0V (typical), 1.0 mA (max)
 Operating Range: 0 to 70°C

 Accelerometer (IC4): Analog Devices ADXL345 3-axis Digital Accelerometer [25]
 Dual Operation: simultaneous operation as accelerometer and tilt-sensor
 I2C and SPI command and data digital interfaces
 32-level sample FIFO
 Built-in motion detection functions
 Configurable interrupt modes mappable to two interrupt pins

 Acceleration Range: Configurable to  2/4/8/16g

 Sensitivity: 4 mg/LSB in all g-ranges (13-bits for  16g)
 Shock Survivability: 10,000g (min)
 Bandwidth: Configurable (max 3200 Hz sample rate)
 Turn-On Time: 1.4 ms (typical)
 Supply Voltage: 2.0 - 3.6V

 Supply Current: 130 A at 2.5V (typical)
 Operating Range: -40 to 85°C

 Battery: Panasonic CR2016 (110 mAh), CR2025 (165 mAh), CR2032 (220 mAh) Battery [28]

 3V Lithium Coin Cell
 Operating Range: -30 to 80°C

13

2.3 SenseModule Schematic Diagram
The schematic diagram for the SenseModule used to collect the data presented later in this paper is

given in Figure 2 below. The schematic was created using V5.0 of CadSoft’s Eagle Schematic and PCB

Layout software [19].

 Figure 2: SenseModule Schematic Diagram

14

2.4 SenseModule PCB Layout
The SenseModule printed circuit board layouts in Figure 3 and Figure 4 below were created from the

schematic shown in Figure 2. The PCBs were laid out using V5.0 of CadSoft’s Eagle Schematic and PCB

Layout software [19].

Figure 3: SenseModule PCB Layout (Top)

Figure 4: SenseModule PCB Layout (Bottom)

15

2.5 SenseModule Theory of Operation
The SenseModule schematic is divided into five distinct sub-circuits:

 Start-up circuit

 Microprocessor (P) and memory circuit

 Ambient light sensor circuit (doubles as receiver)

 Accelerometer circuit

 Transmitter circuit

The start-up circuit is always active and uses one of the microprocessor’s on-board comparators (CP0) to

constantly monitor the ambient light level for signs of user activity. Under the proper circumstances,

the comparator issues a reset signal to the microprocessor, which causes the SM to wake up from

standby mode. In order to conserve battery power, and minimize the size of the battery, the start-up

circuit is designed to draw less than 2 A at all times.

Although IC1 (8051F921 microprocessor), IC2 (24FC1025 EEPROM), and IC4 (ADXL345 3-axis

accelerometer) are always powered, they are all in stopped or halted states that draw very little current

while the SM is in standby mode. When the start-up circuit wakes the SM, the P selectively supplies

power to IC3 (TSL13 Light-to-Voltage Converter), and wakes up the ADXL345 circuit, as needed. For the

same reasons as the start-up circuit, the entire SM is designed to draw minimal (< 3 A) combined

quiescent current while in standby mode. Since the SM is powered by a 3V lithium coin cell, the average

current that the SM draws while running is limited to approximately 1 mA. That current specification

imposes a limitation on the maximum system clock frequency.

The ambient light sensor circuit is selectively powered by the microprocessor. The ambient light sensor

performs double duty: it senses the ambient light level while the SM is collecting sensor data; and it

serves as the infrared communications receiver for ComModule transmissions.

The SM applies power to the accelerometer circuit only while the SM is collecting sensor data. The

accelerometer is powered-off, otherwise. The accelerometer can sense the following events:

 Motion of the ball during the bowler’s approach and release

 Tilt of the ball in all three dimensions with respect to gravity

 Impacts of the ball with the lane and the pins

 Linear and angular acceleration of the ball as it rolls down the lane.

The optical transmitter is only powered when the SM is responding to a CM command – generally while

transferring sensor data to the CM. The transmitter software implements an inverted return-to-zero

(iRTZ) serial UART protocol, in which the space state (logic 1) is dark, and the mark state (logic 0) is a

light pulse of  50% duty cycle. The LED has been chosen to maximize light output at low current, and is

driven by the P’s programmable constant current source, set for 500 A LED current.

2.5.1 Start-Up Circuit

Requirements for the operation of the SenseModule include that it must be automatic and transparent

to the bowler. The presence of the SM must not impinge on the bowler’s normal “feel” for the ball.

Further, operation of the SM while in its data collection mode must not alter the bowler’s normal

routine in any way.

16

The SM has low quiescent power consumption under all ambient lighting conditions. The start-up circuit

is always powered, and must be available to start the microprocessor at any time, without any

intentional interaction on the part of the bowler, except for placing a finger in the insert as part of their

normal delivery. Furthermore, it cannot be assumed that the ball will be stored in a dark ambient

condition, i.e., a bowling ball bag, locker, or closet. Thus, the circuit draws very low current whether

phototransistor T1 is exposed to constant dark conditions, constant light conditions, periodic light-to-

dark and dark-to-light transitions resulting from the normal rolling of the ball, or to the 120 Hz

waveform that overhead fluorescent lights in a bowling establishment impose on the ambient

background light.

The start-up circuit issues a start-up signal whenever the bowler places a finger in the insert, or when

the ComModule is placed over the finger hole. The value of R1 and the ratio of R3 to R4 have been

selected such that T1 is driven sufficiently conductive under ambient background conditions so that the

act of placing a finger in the insert (or covering the finger hole with the CM) causes a light-to-dark

transition. Assuming that some background light is present, either of those conditions will sufficiently

reduce the ambient light reaching T1 to cause T1 to cease conducting.

The start-up circuit is designed to be insensitive to most nuisance light-to-dark transitions. There are

many instances that can cause such transitions:

 Ball rolling over the finger hole on the ball return

 Ball rolling on an above-ground ball return

 Ball spinning on the ball return wheel in the pinsetting machine

 Ball being picked up without a finger placed in the insert

 Jostling of the ball while other bowling balls are being retrieved, or by other balls coming back to
the ball return

The start-up circuit must also not issue a start-up signal when the module is already operational:

 While the ball is rolling down the lane

 During communications with the ComModule

The start-up circuit for the module consists of phototransistor T1 (Optek 521), resistors R1–R5,

capacitors C1 and C2, and the P’s on-board CP0 comparator. When CP0 is configured as part of the

start-up circuit, its inputs and asynchronous output (CP0A) are assigned to the following P port pins:

 CP0+ (positive input): P1.2

 CP0- (negative input): P1.3

 CP0A (asynchronous output): P1.4

The voltage at the junction of R1 and T1 provides the raw start-up signal to IC1 at CP0+. R1 also limits

the maximum current through T1 to ~ 0.7 A. R3 and R4 form a voltage divider that sets the negative

threshold level at CP0-, and draw ~ 0.3 A. R1, R2, and C1 form an RC filter that sets the minimum dark

pulse duration that can reach P’s CP0+ input. R3, R5, and C2 form a second matching RC filter for the

P’s CP0- input to help limit differential noise at the CP0- input, while also providing a bias current that

closely matches that of the CP0+ input.

17

The values for R1, R3, and R4 have been chosen to limit the maximum current to less than 2 A under all

lighting conditions. In addition, the values for the RC filters have been chosen to limit the response of

CP0+ to dark pulse durations of greater than 500 ms. Since there is such a slow rise-time at CP0+, the

CP0 comparator has been configured for start-up operation, as follows:

 Positive Hysteresis: 20 mV (max available)

 Negative Hysteresis: 20 mV (max available)

 Response Time: 5 ms (max available)

The output of the CP0 comparator has been configured to issue a hardware reset internal to the P

upon a positive transition of CP0’s internal output. The asynchronous CP0A output is connected to port

P1.4 so that the start-up operation can be monitored and evaluated on an oscilloscope.

2.5.1.1 Theory of Operation

In a steady-state light condition, T1 conducts, and the voltage at CP0+ is lower than that at CP0-, and the

internal CP0 output is held low (logic 0), and does not trigger the internal P reset.

In a steady-state dark condition, T1 is non-conducting, and the voltage at CP0+ is higher than that at

CP0-. Thus, the internal CP0 output is held high (logic 1), and does not trigger the internal P reset.

In a transition from light to a sufficient level of darkness, T1 stops conducting (its series resistance rises

significantly) so that the voltage at R1 rises, slowly charging C1 through R1 and R2. With a prolonged

duration of sufficient darkness, the voltage at CP0+ eventually rises above that at CP0-, and CP0A

transitions high, creating a positive transition that causes a hardware reset, starting up the P. Upon a

HW reset, the CP0 configuration is also reset such that it no longer can issue a HW reset to the P.

In transition from dark to sufficient brightness, T1 begins conducting (its series resistance falls

dramatically), so that the voltage at CP0+ falls below that at CP0-, and CP0A transitions to a logic 0,

presenting a negative transition that has no impact on the P.

Further, T1 conducts under sufficient light conditions. When T1 is conducting, it is draining charge from

C1 through R2. C1 only has the opportunity to charge to a voltage level above that set by the voltage

divider formed by R3 and R4 when T1 is prevented from conducting for a sufficient amount of time.

Thus, CP0 only responds to dark pulses of a minimum duration (set by R1, R2, and C1), while short

transient pulses, as well as repetitive pulses of sufficient frequency are filtered out from detection.

A description of a typical start-up scenario of the SenseModule follows.

1) The bowler picks up the ball. The act of picking up the ball is sufficient to introduce enough

light to the finger hole to cause T1 to conduct, which results in CP0 internally emitting a logic

low. Recall that the P does not respond to dark-to-light transitions.

2) In preparation for delivering the ball to the lane, the bowler places his fingers in the finger

holes, which cuts off light to T1 for a duration sufficient to charge C1 (through R1 and R2) to a

level above that set at CP0- by R3 and R4. This is a light-to-dark transition.

3) As a result, CP0 transitions from low to high, which triggers the internal HW reset for the P.

18

4) While the P is in reset, it disables CP0, and applies weak logic pull-up resistors to both CP0+

and CP0-, all of which prevent CP0 from issuing a subsequent HW reset until it is once again

configured for that purpose (just before the SM returns to SleepMode).

5) The P comes out of reset and vectors to its reset code, and commences program execution.

6) Finally, when the P is ready to shut down, it again configures CP0, allows the CP0 output to

settle, and then enables CP0 to again detect start-up pulses. The P then immediately enters

its internal micro-power SleepMode.

7) If (on the rare occasion) a valid start-up light-to-dark transition occurs and triggers CP0

before the P has had the opportunity to enter SleepMode, the start-up circuit issues a valid

reset pulse, and the P is once again placed in reset, and then vectors to its reset code

(returning to step 4).

2.5.2 Light Sensing Circuit (IC3 – TSL13)

The ambient light sensing circuit is based on the AMS Sensing Solutions TSL13 light-to-voltage converter

chip. The TSL13 outputs a linear voltage in relation to the light intensity (irradiance) that falls upon it.

The output is ratiometric to the supply voltage [26].

The TSL13 (IC3) is selectively powered by the P to limit power consumption. The TSL13 is powered

through VDD (pin 3) from P0.6 on the P, which is configured as a digital push-pull output pin. The

TSL13’s ground pin (GND, pin 2) is connected to battery ground. The TSL13’s output pin (Out, pin 4)

connects to P1.0 of the P, which is configured as an analog input pin, which the P configures as an

ADC input or as the CP1+ input, as necessary.

Resistors R6 and R7 form a voltage divider between the TSL13’s VDD and GND pins, while the junction

between R6 and R7 connects to P1.1 of the P, which is configured as the CP1- input. The R6-R7 voltage

divider sets the threshold voltage for infrared serial light-pulse detection.

The light sensing circuit serves dual purposes:

1) It senses the ambient light level impinging upon the sensor module during the bowler’s

approach, and while the ball is rolling down the lane. In this case, P1.0 of the P (to which the

output of the TSL13 is connected) is configured as an ADC input channel.

2) It detects optical-based serial data transmissions to the SenseModule. In this case, P1.0 of the

P is configured as the positive input (CP1+) to its onboard CP1 comparator.

2.5.2.1 Sensing Mode

When the SenseModule is sensing ambient light, the P periodically measures the ambient light level

impinging upon the module. The P configures P1.0 as the ADC input for the TSL13, applies power to

the TSL13 through P0.6 (outputting a logic 1 at P0.6), waits an appropriate amount of time for the TSL13

to stabilize (100 s), and then initiates an ADC sample of the TSL13’s output pin. After the P’s internal

ADC circuitry signals that it has completed the sample conversion, the P removes power from the

TSL13 by setting P0.6 to logic 0.

19

The P “sees” the moment the bowler releases the ball by detecting the dark-to-light transition as the

bowler’s finger leaves the finger insert. While the ball is rolling, the P periodically samples the ambient

light sensor output and stores those samples in the FC1025 EEPROM, using a method and hardware

similar to that used to capture the light waveforms in the original SMARTDOT sensor module.

2.5.2.2 Communications Mode

While the sensor module is in communications mode, the P provides constant power to the TSL13

through P0.6. The P configures P1.0 as the positive input (CP1+) and P1.1 as the negative input (CP1-)

for its onboard CP1 comparator. When the voltage from the TSL13 at the CP1+ pin exceeds that

determined by the R6-R7 voltage divider connected to the CP1- pin, CP1 outputs a logic 1 internal to the

P. When the voltage at the CP1+ pin falls below the threshold set by R6-R7, CP1 outputs a logic 0

internal to the P. The SenseModule embedded software then interprets the internal CP1 output to

emulate a serial receiver.

The transmitter is a visible/infrared LED driven by the P’s programmable constant current source

(IREF0), and is connected to the P via P0.7. IREF0 is configured to drive the transmit LED with 500 A.

To further limit the LED current during transmission, an inverted return-to-zero (iRTZ) scheme is used for

serial transmission, similar to the IRDA standard, where serial ‘0’ bits will be transmitted as short light

pulses (≤ 50% duty cycle), while serial ‘1’ bits are represented by the interstitial dark times.

2.5.3 Accelerometer circuit (IC4 – ADXL345)

The accelerometer circuit is based on the Analog Devices ADXL345 3-axis accelerometer chip. From the

ADI data sheet [25],

“The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution (13-

bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos

complement and is accessible through either a SPI (3- or 4-wire) or I2C digital interface.

The ADXL345 is well suited for mobile device applications. It measures the static

acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration

resulting from motion or shock. Its high resolution (4 mg/LSB) enables measurement of

inclination changes less than 1.0°.”

The P can place the ADXL345 (IC4) in a micro-power standby mode through commands issued via the

I2C interface, thus VDD (pin 1) of the ADXL345 is always connected to the battery. The hardware chip

select (̅̅̅̅) pin is pulled to a logic ‘1’, while the analog supply (VS) is connected to the battery via a

separate line than the digital logic. The ground pins (pins 2, 4, 5, 10, 11), plus ALTADDR (pin 12), are

connected to battery ground.

All chip configuration and data retrieval operations are performed via the I2C interface (SDA and SCL).

The two configurable interrupt pins (INT1 and INT2) are connected to the P’s P0.5 and P0.4 port pins,

respectively. Those port pins are then configured as external interrupts for the P.

The ADXL345 is the primary sensor for the SenseModule. The ADXL345 measures both the static force

due to gravity (3-axis tilt sensor), as well as the dynamic forces exerted upon the chip. Thus, the

20

ADXL345 can detect the orientation of the SM with respect to the vertical acceleration due to gravity, as

well as the instantaneous centripetal acceleration generated by the angular velocity (rotation) of the

ball, along with any impacts and vibration the ball experiences. Digital signal processing (DSP)

techniques are then used to separate those components into their constituent parts.

The ADXL345 is situated on the SM PCB in such a way that the X and Y axes are oriented tangentially to

the ball’s surface, so that they respond primarily to the tilt of the module relative to gravity and less so

to the centripetal acceleration of the ball. The Z axis is oriented in line with the radius of the ball, and

responds more strongly to the centripetal acceleration than the X and Y axes. The ADXL345 provides the

raw 3-axis accelerometer data necessary for determining the motion of the ball during the bowler’s

approach and delivery, the forces the bowler applies to the ball during the release motion, and the

reaction of the ball as it rolls down the lane. It also detects the ball’s impact with the lane, and

ultimately with the pins.

The P configures the ADXL345 to run autonomously, collect 3-axis accelerometer samples at 200 HZ,

store those samples in its internal sample buffer, and issue an interrupt when the sample buffer reaches

25 samples. Thus, the P can be put into a low-power idle mode while the ADXL345 fills up its sample

buffer. With the ADXL345 configured as described, it nominally draws 350 A while collecting samples,

and much less than 1 A while in standby mode.

2.5.4 Microprocessor (IC1 – 8051F921)

The 8051F921 microprocessor (P) is always powered, but spends most of its time in a micro-power

sleep mode. While in sleep mode, only two functions are powered: the CP0 comparator, which is

connected to the start-up circuit, and the smaRTClock, which keeps track of the date and time-of-day.

CP0 is configured to issue a reset to the P, which causes the P to execute its internal self-

configuration routine before beginning program execution at the reset vector. At that point, the

embedded software takes over and further configures the P as needed for the SenseModule

application. After the SM has concluded processing the event that woke it up, it shuts down all

unnecessary functions and returns to sleep mode, awaiting the next wake-up event.

The 8051F921 is a highly configurable system-on-a-chip. The basic configuration parameters for the

various microprocessor functions that the SM utilizes are presented below [23].

2.5.5 System Clock

The 8051F921 P has an onboard system oscillator, which is factory programmed for 24.5 MHz  2%.

The system clock can be configured for slower clock rates (divide by 2, 4, or 8). Since the SenseModule

application requires low power consumption, the system clock is configured for the minimum clock rate:

24.5 MHz / 8 = 3.05 MHz. In addition, the clock rate can be changed on-the-fly. If additional processing

speed is necessary, the system clock frequency can be temporarily increased, as needed.

2.5.6 Low Power Modes

The P has several low-power modes that can be used to significantly reduce power consumption. The

P’s internal sleep mode allows it to remain powered, while shutting off current to all peripherals

except for the low-power comparators and the smaRTClock. In that configuration, the P draws ~1 A.

21

The P can resume processing from sleep mode based a number of configurable events. In this

application, those events are the CP0 comparator output, and the smaRTClock functions.

The P also has an internal idle mode that allows the timers, comparators, and ADC to run, while

shutting off any unnecessary circuitry. The P can resume processing from idle mode, based on any

interrupt. Idle mode is used to significantly reduce current consumption during sampling.

2.5.7 Real Time Clock (RTC)

The P has an on-board micro-power real time clock (smaRTClock) that is used to track chronological

time, as well as provide correlated time-stamps for the ambient light and acceleration samples. The RTC

function is always enabled, and allows the SenseModule to keep track of the date and time-of-day, even

when the SM is in sleep mode. A 32.768 kHz crystal oscillator is used to drive the smaRTClock.

2.5.8 Port Pins

Another key feature of the P is the ability to assign selected peripheral functions to specific port pins,

as needed. This capability facilitates optimal use of port pins, as well as helps optimize PCB layout.

2.5.9 Comparators

The P has two highly-configurable, on-board, low-power analog comparators (CP0 and CP1).

Comparator CP0 serves as part of the start-up detection circuit, while CP1 is the serial reception edge

detector for the software UART.

2.5.10 Analog-to-Digital Converter (ADC0)

The P has a highly configurable, on-board 300 Ksps 10-bit analog-to-digital converter (ADC0) that

accepts signals from a 13-channel analog multiplexer. ADC0 is used to sample the ambient light

waveform at the output of the TSL13 light-to-voltage converter.

2.5.11 I2C Bus

There is byte-wide I2C bus function built into the P. The I2C bus function is used to interface with the

ADXL345 accelerometer and the 24FC1025 serial EEPROM.

2.5.12 Timers

There are 4 timers available for assignment to a variety of functions. The I2C bus requires a timer, as

does the ambient light sampling timer and the ADC0 converter. In addition, the serial communications

interface utilizes a timer, although serial communications never run in conjunction with sampling.

2.5.13 Interrupts

The P has an extensive two-level prioritized interrupt system. The UART bit-slice timer, the ADC0

sample timer and ADC0 conversions, the I2C bus, the comparators, the Port 0 pins connected to the

ADXL345 interrupt pins, and the smaRTClock all issue interrupts that are utilized in this application.

2.6 EEPROM (IC2 – 24FC1025)
The 24FC1025 EEPROM has a capacity of 128 Kbytes, arranged as 1024 pages containing 128 bytes a

page. The EEPROM has a 128-byte write buffer that allows full page writes to be received in one I2C

transaction, and committed to memory in a single write cycle. It also has a maximum write time of 5

22

ms, for any single write transaction, including writing an entire 128-byte page. As with the P, the

24FC1025 I2C serial EEPROM chip is always powered, but draws negligible current when not being

accessed and not committing data to memory from its write buffer [24].

Although the page writing capability is 5 ms, it takes longer than that (~7 ms) to transfer 128 bytes to

the EEPROM’s write buffer via the I2C bus. Thus, it takes ~12 ms to transfer and write a page to

EEPROM, and ~7 ms to read a page from EEPROM (or the ADXL345). The page writing capability of the

EEPROM is heavily leveraged to take advantage of the faster overall data transfer rates, as well as to

limit the amount of time the EEPROM spends committing data to memory. The EEPROM draws ~250 A

during reads and ~2 mA while committing data to memory. During sampling, the SenseModule writes 9

sample pages to EEPROM per second. By limiting the number of individual reads and writes to just

those 9 pages, the active duty cycle of the EEPROM has been reduced to about 10%, resulting in an

average current draw of about 115 A, while sampling.

The EEPROM goes “silent” when it is in the process of committing its write buffer to memory. The SM

uses that characteristic to find out when the EEPROM is ready to process the next transaction. If the

EEPROM does not respond to a request, the SM software has a retry function that it executes the next

time through its event processing loop. Thus, during sampling, there is no waiting on the EEPROM to

finish committing a page to memory.

23

Section III: SenseModule Embedded Software

The SenseModule operation is intended to be fully autonomous. The SM should automatically turn itself

on and off, without requiring the bowler to alter their normal routine in any way. Whenever the bowler

rolls the ball down the lane, the SM should automatically record what it “sees” through its ambient light

sensor (TSL13), and what it “feels” through its 3-axis acceleration sensor (ADXL345). Sometime after the

SM has recorded the data, the bowler places the ComModule over the finger hole that holds the SM, at

which point the SM should automatically detect the presence of the CM, and upload the recorded

sensor data to the CM.

3.1 SenseModule Use Cases
Given the above requirements, there are three basic scenarios (use cases) to which the SenseModule

must respond:

1) Recording sensor data: The bowler picks up the ball from the ball return, and places their

fingers in the ball, which automatically wakes up the SenseModule from SleepMode. The SM

detects a recordable event, and records sensor readings, from the time the bowler starts their

approach, releases the ball, and delivers it to the lane, through the time the ball takes to

traverse the lane, hit the pins, and fall into the pit at the back end of the lane. At that point, the

SM automatically shuts down, and returns to SleepMode.

2) Uploading sensor data: At some later time, the bowler uploads the collected sensor data to the

ComModule by placing the CM over the finger hole in which the SM is located. The SM and CM

automatically detect each other’s presence, and the SM switches to CommandMode. The CM

issues a sequence of commands in order to retrieve the sensor data from the SM, and the SM

uploads the sensor data under control of the CM. The SM automatically shuts down at the end

of the command sequence, returning to SleepMode.

3) Rejecting false wakeup conditions: The bowler rolls the ball down the lane, and it reaches the

end of the lane and falls into the pit. The SM automatically returns to SleepMode after having

recorded its sensor data. The pinsetter picks up the ball and sends it back to the ball return.

The ball emerges from the pinsetter into the light, just before rolling down the return ramp into

the “subway.” The light-to-dark transition that results is sufficient to wake the SM. Further

complicating matters, the ball is rolling, appearing to the SM as if the bowler has again rolled the

ball. The SM should automatically reject this event, and any other wake-up event that is not the

result of the first two use cases.

3.2 Software Requirements
The above use cases impose a certain minimum set of required features and functions upon the

SenseModule embedded software. There are additional requirements that must also be incorporated in

order to make the REVMETRIX system easy and convenient to use.

3.2.1 Module Configuration

Since the SenseModule is still in development, optimal values for various light levels, release and

shutdown detection algorithm parameters, time out values, etc. have yet to be determined. It is not yet

24

known whether a single set of parameters will be applicable across the various bowling styles. Thus,

many of the parameters used by the SM should be configurable – stored in, and retrieved from

EEPROM, as needed.

In addition, there is also a need for a unique module identifier, as well as a method for associating a

particular SM with the ball in which it is installed. Password protection should also be implemented to

discourage theft of the device and/or the bowling ball in which the SM is installed.

3.2.2 Power Management

The SenseModule has severe constraints on its battery capacity. The SM software should manage its

internal and external hardware resources, as well as its overall run time to minimize current

consumption. Such a strategy will both limit the required capacity of the battery (thus its size and

weight), as well as extend the interval between battery replacements. Implementing that strategy

involves a multifold approach:

1) Limit the system clock speed, and the time the P spends operating at that clock speed.

2) Maximize the time the P spends in low-power modes, such as SleepMode and IdleMode.

3) Selectively enable internal hardware functions (timers, ADC, I2C bus) only when needed.

4) Selectively enable external peripherals (ADXL345, TSL13) only when needed.

5) Limit transactions on the I2C bus: reads of the ADXL345, and reads/writes of the EEPROM.

6) Use time out intervals when waiting for events, e.g., valid wake-up, release, sampling, etc.

7) Limit the LED transmission current during serial communication.

3.2.3 Time Measurement

The SenseModule has several requirements for time measurement. It must have a stable MHz-level

system clock. It must also sample the ambient light level (TSL13 output) at regular intervals. Even

though the ADXL345 provides its own sample clock, the SM must be able to provide correlated time

stamps between the light samples and the acceleration samples. The SM must also be able to keep

track of chronological time so that the bowler can later associate the data captured in the SM memory

with the dates and places of the captured data.

The SM uses a 3.05 MHz system clock derived from the P’s on-board 24.5 MHz oscillator. That system

clock is accurate enough for clocking the P and the various internal timers that are used for light

sampling, serial communications, and the I2C bus timing. The P also provides an internal smaRTClock

function that is used to implement a micro-power real time clock (RTC) when driven by a 32.768 kHz

watch crystal. The RTC has a greater overall accuracy than the built-in system clock oscillator, so it is

also used to provide a correlated time-stamp for the light and acceleration readings.

3.2.4 Ball Record Database (EEPROM)

It would be highly inconvenient and intrusive upon the bowler’s normal routine if they were required to

upload the sensor data after every roll of the ball. Thus, the SenseModule must be able to store sensor

data resulting from multiple rolls of the ball. At a minimum, the bowler should not have to upload data

from the SM more frequently than once per game.

25

3.2.5 Command Processing

The SenseModule uploads the data it collects to the ComModule via a serial infrared UART. A command

protocol and series of commands are required that allow the CM to configure the SM, as well as

interrogate it, and retrieve data from it. Since all non-volatile configuration and sensor data is stored in

the SM’s EEPROM, two commands are required, at a minimum:

1) Write EEPROM Page

2) Read EEPROM Page

With the above two commands, the CM could read or write any combination of bytes in the SM by

reading a page, modifying only the necessary bytes in that page, and then writing the modified page

back to EEPROM. Other commands could be provided for the ease of interacting with the SM.

3.2.6 Infrared Serial UART (iRTZ Format)

The SenseModule communicates with the ComModule via an infrared serial interface using an inverted

Return-To-Zero (iRTZ) format in order to limit the LED transmission current. Although the P has an on-

board serial UART, it is not configurable for the required iRTZ format. Thus, the iRTZ UART must be

implemented in software.

3.2.7 Sensor Sampling

The main function of the SenseModule is to capture and store the raw data waveforms generated by the

light sensor (TSL13) and the 3-axis accelerometer (ADLX345). Sufficient sampling rates are required that

allow accurate reproduction of the captured waveforms, while still keeping the sample rate at a

minimum in order to maximize the number of individual frames that the SM can store in its EEPROM, by

limiting the amount of data collected per frame.

Due to the interrupt-driven nature of the sampling process, there are several data buffering techniques

that should be utilized. Interrupts should be short-lived (quick), implementing just enough processing to

retrieve the sample and place it in a buffer for event processing after return from the interrupt.

3.2.8 Sample Storage

3.2.8.1 Light Samples Buffer

Light samples are collected at a 240 Hz rate, and then averaged together to create a single 120 Hz

reading. This averaging schemes filters out the 120 Hz “noise” imposed on the light waveform by the

overhead fluorescent lighting found in most bowling establishments. To limit the amount of time that

the P is awake to collect and process light samples, the ADC0 interrupt should buffer a certain quantity

of 120 Hz light samples before notifying event processing that new light samples are available.

3.2.8.2 ADXL Sample Buffer

A single 3-axis sample collected by the ADXL345 consists of 6 total bytes, 13 bits per axis, left-justified

into a 16-bit word for each axis. The SMBUS0 interrupt reads the ADXL345 via the I2C connection, and

should assemble and store the 6-byte sample in its own buffer, until such time as the complete sample

has been read, at which point it should copy the contents to a separate buffer for event processing to

26

handle. Thus, the interrupt can return to receiving the next sample without the possibility of

overwriting the previous sample before event processing has a chance to execute.

3.2.8.3 Light Page Circular Buffer and ADXL Page Circular Buffer

During the bowler’s approach, while the SenseModule is waiting for release, it must capture and store

sensor data while it is also detecting the release condition from that sensor data. Only the most recent

few seconds of data immediately preceding the release event must be stored in EEPROM; the rest can

be discarded. The best way to do this is to implement circular buffers for both the light and

accelerometer readings.

The interrupts capture and buffer the data, and event processing periodically transfers the buffer

contents to the appropriate circular buffers. When the SM detects the release event, it can then start

writing to the EEPROM from the current contents of the circular buffers.

3.2.9 Wakeup Validation

Whenever the SenseModule wakes up, it must first discriminate between the three given use cases, and

determine which of them to follow. The SM’s first task is to detect a valid wake-up condition, and then

detect the presence (or absence) of the ComModule, before moving on to considering recording sensor

data.

A valid wake-up condition only occurs under extended dark conditions – either the bowler’s finger is in

the ball, or the CM is covering the finger hole. Thus if the SM “sees” too much light to soon after waking

up, it should reject the wake-up condition as invalid, and immediately return to SleepMode.

Communication with the CM requires a very dark background light level. While the SM is validating the

wake-up light level, it should also check for a level conducive to communication with the CM. If the light

level immediately after waking up is sufficiently dark for communication, then the SM should first

attempt to initiate contact with the CM. Only after contact with the CM cannot be established, should

the SM proceed to sampling and recording data.

3.2.10 Approach and Release Detection

The SenseModule should not only capture the bowler’s release of the ball and what follows afterwards,

it should capture the motion of the ball during the bowler’s approach leading up to release. However,

only the last several seconds immediately preceding release are of interest. Thus, the SM should have a

“pre-trigger” function that constantly samples the light and ADXL waveforms leading up to release (the

“trigger”), but only retain the most recent few seconds of captured sensor data.

A release detection algorithm is required that can detect the bowler’s release of the ball, and discern

between an actual release event, and similar looking events, such as the ball emerging from the

pinsetter on it is way to the ball return, and the ball emerging from the ball return itself. Both of those

instances involve a dark-to-light transition, coincident with rotation of the ball.

In addition, there are wake-up events where the release condition will not occur. The SM should have a

time out function associated with release detection, to limit the time it remains awake, waiting for

27

release. If the time out expires before a release condition is detected, the SM should automatically shut

down and return to SleepMode.

3.2.11 Shutdown Detection

The SenseModule has severe constraints on data storage, as well as battery capacity. The SM should

record data only up to the point that the ball has passed through the pins and fallen into the pit.

Afterwards, it should automatically shut down operation and return to SleepMode.

A shutdown detection algorithm is required that quickly and reliably detects when the ball has ceased

rolling. This routine should also be robust enough to discern the difference between the ball rolling

down the lane, and the ball rotating while it is being sent back to the ball return.

As a “fail-safe” for shutdown detection, there should also be a shutdown time out function that halts

sampling after a specified maximum time spent sampling data has expired.

3.3 EEPROM Memory Map
The SenseModule accumulates its sensor readings in external EEPROM. The EEPROM contents are

divided into 128-byte pages (which is also the buffer size for write operations to the EEPROM). The

EEPROM capacity is 1024 pages of 128 bytes each, for a total of 128 Kbytes. For this application, all

reads from and writes to EEPROM are conducted a page (128 bytes) at a time, starting on an EEPROM

page boundary.

The EEPROM is logically divided into three sections (3.3.1):

1) Configuration Page (page 0)

2) Ball Pointer Page (page 1)

3) Ball Record Array (pages 2 – 1023)

Page 0 of the EEPROM is the SM’s Configuration Page, which holds all of the configuration data and

operational and system parameters for the SM (3.3.2).

Page 1 of the EEPROM is the Ball Pointer Page, which consists of an array of pointers to the first page of

each Ball Record stored in EEPROM (3.3.3).

Pages 2 through 1023 hold the Ball Record array. Each Ball Record consists of a Ball Page, and a variable

length collection of Light Pages and ADXL Pages that contain the captured sensor data for that particular

Ball Record (3.3.5). The pages for each Ball Record are stored contiguously, with the Ball Page first

(3.3.6), followed by a mix of Light Pages (3.3.7) and ADXL Pages (3.3.8). The Ball Page holds the header

information for the Ball record. It also doubles as the first Light Page, with the bytes remaining after the

header information being filled with Light samples. The Light Pages are stored in chronological order, as

are the ADXL Pages, but there is no guarantee that the entire collection of the Ball Page, the Light Pages,

and the ADXL Pages are all stored in chronological order with respect to each other.

The Ball Record array located in the EEPROM is organized as one large circular buffer. It spans 1022

pages, from EEPROM page 2 to EEPROM page 1023. The pages of a new Ball Record are written

28

contiguously to the EEPROM, overwriting the existing contents. When EEPROM page 1023 is written,

the Configuration Page (page 0), and the Ball Pointer Page (page 1) are skipped over, and the next

available sample page is page 2.

Before the SM begins committing a new Ball Record to EEPROM, it first retrieves the location of the next

Ball Pointer entry to use (nextBall) , and the location of the next available sample page in the Ball Record

array (nextBallPage).

At the conclusion of committing a new Ball Record to EEPROM, the Ball Pointer page is updated with the

location of the Ball Page from the new Ball Record, and nextBall and nextBallPage are updated in the

Configuration Page to point to the next available Ball Pointer and Ball Page respectively. The SM

conducts a scan of the Ball Pointer array to verify which Ball Records are still valid, and which ones had

at least one page that was overwritten. Any such records are marked as deleted in the Ball Pointer

array, thus maintaining the integrity of the Ball Record database. See Figure 5 for a graphical depiction

of the EEPROM memory map.

3.3.1 EEPROM Layout

The EEPROM is divided into 1024 physical pages of 128 bytes each. It is possible to access individual

bytes of the EEPROM. However, in this application, it is more efficient to access a page at a time. Each

page written to EEPROM has a Page Type associated with it, as the first byte of the page. The

SenseModule can quickly identify the format of each page it reads from EEPROM by the Page Type.

Table 1: EEPROM Map

EEPROM MAP (128 Kbytes – 1024 128 byte pages)

Addr: 0:0000 Addr: 0:0080 Addr: 0:0100

CONFIGURATION PAGE BALL POINTER PAGE BALL RECORD ARRAY

(Section 3.3.2) (Section 3.3.3) 14 min @ 9344 bytes
32 max @ 4096 bytes

1 page (128 bytes) 1 page (128 bytes) 14-32 Ball Records (1022 pages)

The Configuration Page and Ball Pointer Pages are described below. The Ball Record Array is arranged as

a circular buffer that contains the variable length Ball Records (3.3.5) associated with the Ball Record

Pointers (3.3.4).

29

SenseModule Serial EEPROM Layout

The SenseModule serial EEPROM is configured as 1024 separately addressable 128-byte pages. Even

though each byte is individually addressable, the SenseModule always buffers EEPROM reads and writes

on a page basis to limit I
2
C transactions, and the EEPROM write penalty (5 ms, 2 mA). The EEPROM is

divided into 3 basic pieces: the Configuration Page, the Ball Pointer Page, and the Ball Record Array.

Ball Record

SenseModule Configuration Page
(EEPROM Page 0)

Holds all SenseModule configuration and

system parameters and database pointers.

Next Ball
(Page 0, Byte 28h)

Next available pointer in

the Ball Pointer Page.

Next Ball Page

(Page 0, Byte 29h)

Next available page in the

Ball Record Array.

Ball Pointer Page

(EEPROM Page 1)

Array of 62 Ball Record Pointers

that point to the Ball Page of each

stored Ball Record.

Ball Record Array
(EEPROM Pages 2-1023)

Holds from 14-32 variable-length Ball

Records.

Ball Page
First page of Ball Record

(doubles as first Light

Page). Stores RTC date

and time of begin/end of

sampling, # of Light Pages,

of ADXL Pages, and first

106 Light Samples.

Light Pages
Up to 7 additional Light

Pages, each holding 120 8-

bit light samples, along with

RTC time stamp of the first

sample of the page.

Stored chronologically,

relative to each other.

Ball Record Pointer
Points to the first page of a

Ball Record.

ADXL Pages
Up to 64 ADXL Pages,

each holding 25 3-axis

ADXL samples (5-bytes

each), along with RTC time

stamp of the first sample.

Stored chronologically,

relative to each other.

Ball Record
Composed of a Ball Page, and a variable

length collection of Light and ADXL Pages,

allowing for up to 8 seconds of sampling

time per ball.

Figure 5: SenseModule Serial EEPROM Memory Map

30

3.3.2 Configuration Page

The Configuration Page holds the following configuration, system, and operational parameters. It is

protected by a 16-bit CRC in order to detect corruption of the Configuration Page contents.

Table 2: Configuration Page Contents

PAGE 0 ADDRESS: 0:0000 CONFIGURATION PAGE (CONFIGPAGE)
0:0000 BYTE Page Type: 0x20

0:0001 WORD SW Version: loaded by firmware

0:0003 WORD DB Version: loaded by firmware

0:0005 CHAR[10] Ball Name: set by user

0:000F WORD Module ID: unique for this module (CRC from Ball Name)

0:0011 WORD Module Password: supplied by user from ComModule

0:0013 DWORD Time Base: set by ComModule after each command (time_t)

0:0017 WORD Recording Mode: 0: Off (does not record, only responds to ComModule)
 1: Single (records one Ball Record at a time)
 2: Full (records until full, does not overwrite new Ball Records)
 3: Automatic (always records – overwrites oldest Ball Records)

0:0019 BYTE Light Buffer Pages: # of Light pages in Approach Buffer

0:001A BYTE ADXL Buffer Pages: # of ADXL pages in Approach Buffer

0:001B BYTE Max Sample Time: max # of seconds to sample

0:001C BYTE Light Release Threshold: min TSL13 values to detect release

0:001D BYTE ADXL Release Threshold: min ADXL Z-axis value to detect release
0:001E BYTE Light Sample Threshold: min Light value to continue sampling

0:001F BYTE ADXL Sample Threshold: min ADXL Z-axis value to continue sampling

0:0020 BYTE ADXL Impact Threshold: min X, Y-axis values to detect impact

0:0021 WORD Ball Count: total # of Ball Records created, rolls over at 65535 (16-bits)

0:0023 WORD Deleted Ball Count: # of new Ball Records overwritten since count was last reset

0:0025 BYTE New Ball Count: # of new Ball Records in DB

0:0026 BYTE First New Ball: oldest new Ball Record in DB

0:0027 BYTE Newest Ball: most recent new Ball Record in DB (last ball pointer used)

0:0028 BYTE Next Ball: next available Ball Record in DB (next ball pointer to be used)

0:0029 WORD Next Ball Page: next available Ball Page in DB (where next Ball Record is written)

0:002B BYTE Transmit Retry Count: # of retries during last download (for troubleshooting
communications)

0:002C WORD Transmit Retry Page: first page that had to be retried (for troubleshooting
communications)

0:002E BYTE Reset Reason: reason code for last EEPROM initialization

0:002F WORD System Clock adjustment: set by factory, and adjustable by ComModule
0:0031 WORD Baud rate adjustment: set by factory, and adjustable by ComModule

0:0033 BYTE RCV baud rate (28800, 57600, 1152000)

0:0034 BYTE TRX baud rate (28800, 57600, 115200, 230400)

0:0035 BYTE ADXL Sample Frequency (100 Hz, 200 Hz, 400 Hz, 800 Hz)

0:0036 BYTE TSL13 Sample Frequency (120 Hz, 240 Hz)

0:0037 BYTE Inactivity time: sleep if inactive for at least this long

0:0038 BYTE Inactivity Threshold: (x-axis, y-axis, z-axis), register inactivity when all axes are below
this threshold

0:0039 BYTE[69] unused

0:007E WORD CRC (16 bits)

31

3.3.3 Ball Pointer Page

The Ball Pointer page contains an array of 62 pointers to Ball Records. Each Ball Record Pointer contains

the EEPROM page address where the first page (Ball Page) of its corresponding Ball Record is located.

Since Ball Records are variable length, and the Ball Record array is designed as a circular buffer, Ball

Record Pointers are neither positional nor absolute, i.e., Ball Record Pointer 0 does not point to Ball

Record 0. Rather, Ball Records are cumulative over the life of the SenseModule. After the Ball Record

array is full, each new Ball Record overwrites the oldest Ball Record in the array due to the circular

nature of the array. The Ball Record number is stored in the Ball Page of the record as Ball Count. The

Configuration Page stores the locations of the oldest unread Ball Record, the newest Ball Record, and

the next Ball Record Pointer and EEPROM page to use. The Ball Pointer Page is protected by a 16-bit

CRC to detect corruption of the Ball Record Pointer array. Although the Ball Pointer Page holds 62 Ball

Record Pointers, the current size of the EEPROM limits storage to a maximum of 32 Ball Records. A

future incarnation of the SM, with an additional EEPROM chip, could hold up to 62 Ball Records.

Table 3: Ball Pointer Page Structure

BALL POINTER PAGE (EEPROM Page 1, Address: 0:0080, 128 bytes)

0 1 2-125 126-127

PAGE TYPE UNUSED BALL RECORD POINTER ARRAY (0-61) PAGE CRC

0x30 see below 16-bits

BYTE BYTE WORD[62] WORD

3.3.4 Ball Record Pointer

Each Ball Record Pointer maintains the following status bits. The “In Use” bit indicates that the pointer

currently points to a valid Ball Record. The “New” bit indicates that the Ball Record has not yet been

uploaded. The “Deleted” bit indicates that the Ball Record associated with this pointer has been

overwritten, and is no longer valid. The lower order 11 bits contain the EEPROM page address of the

associated Ball Record.

Table 4: Ball Record Pointer Structure

BALL RECORD POINTER (2 bytes)

15 14 13 12 11 10 - 0

BALL STATUS BITS BALL RECORD POINTER

IN USE NEW DELETED
unused

unused

EEPROM PAGE

1: In Use
0: Available

1: New
0: Old

1: Deleted
0: Not Deleted

2 - 1023

WORD

32

3.3.5 Ball Record

Ball Records are variable length, and consist of a Ball Page (as the first page), and a mix of up to 7 Light

Pages, and up to 64 ADXL Pages, based on the maximum sampling time set in the Configuration Page.

The Ball Page also doubles as the first Light Page. The Light Pages are stored in chronological order

relative to each other, and the ADXL Pages are also stored in chronological order relative to each other,

but there is no guarantee that the entire collection of Ball Page, Light Pages, and ADXL Pages are all

stored in chronological order with respect to each other.

Table 5: Ball Record Structure

BALL RECORD (9216 bytes max: 72 sample pages * 128 byes)

0 1-71 (max)

BALL PAGE SAMPLE PAGES

Doubles as first Light Page (106 samples, 883 ms)
(Section 3.3.6)

Mix of
1–7 Light Pages (Section 3.3.7), up to 7 seconds

and
1-64 ADXL Pages (Section 3.3.8), up to 8 seconds

1 EEPROM page (128 byes) Up to 71 EEPROM pages (9088 BYTES max)

33

3.3.6 Ball Page

The first page of a Ball Record is always a Ball Page. The Ball Page also doubles as the first Light Page, but has a lower sample capacity than the

Light Pages, since it also holds the header data for the Ball Record.

Table 6: Ball Page Structure

BALL PAGE (128 bytes)

0 1-4 5-6 7 8-11 12-15 16-19 20 21 22-127

BALL PAGE

HEADER
PAGE TIME

STAMP

BALL

COUNT
SAMPLE

COUNT

BALL TIME

STAMP

START TIME

STAMP
END TIME

STAMP

LIGHT PAGES

ADXL PAGES

LIGHT

SAMPLES

ARRAY

see
below

RTC time @
start of

page

 # of samples
stored in

page

RTC date @
start of

sampling

RTC time @
start of

sampling

RTC time @
end of

sampling

of Light
pages in Ball

Record
(range: 1-8)

of ADXL
pages in Ball

Record
(range: 1-64)

8-bit
Samples
0 – 105

(833 ms)

BYTE DWORD WORD BYTE DWORD DWORD DWORD BYTE BYTE BYTE[106]

Each Ball Page Header points back to its Ball Record Pointer in the Ball Pointer Page.

Table 7: Ball Page Header Structure

BALL PAGE HEADER (byte 0 of Ball Page)

7 6 5 4 3 2 1 0

PAGE TYPE BITS BALL RECORD #

1 1 0 - 61

Ball Page Type = 11xxxxxxb Ball index from Ball Pointer Page

BYTE

34

3.3.7 Light Page

Each Light Page can store up to 120 8-bit ambient light samples (1 second of data) collected from the

TSL13 Light-to-Voltage converter. All Light Pages hold the full 120 samples, with the exception of the

last Light Page, which may hold less, depending on when waveform sampling was terminated. Each

Light Page also stores the RTC time stamp at the time the first sample was collected for that page.

Table 8: Light Page Structure

LIGHT PAGE (128 bytes)

0 1-4 5-6 7 8-127

LIGHT PAGE

HEADER
PAGE TIME STAMP BALL

COUNT
SAMPLE COUNT LIGHT SAMPLES

ARRAY

see below

RTC time @ start of
page

 # of samples stored in
page

8-bit Samples
0 – 119

(1 second)

BYTE DWORD WORD BYTE BYTE[120]

Each Light Page Header points back to its Ball Record Pointer in the Ball Pointer Page.

Table 9: Light Page Header Structure

LIGHT PAGE HEADER

7 6 5 4 3 2 1 0

PAGE TYPE BITS BALL RECORD #

1 0 0 - 61

Light Page Type = 10xxxxxxb Ball index from Ball
Pointer Page

BYTE

35

3.3.8 ADXL Page

Each ADXL Page can store 25 5-byte compressed 3-axis acceleration readings (125 ms) collected from

the ADXL345 3-axis accelerometer. All ADXL Pages hold the full 25 samples, since sampling always stops

at the end of an ADXL Page. Each ADXL Page also stores the low-order word of the RTC time stamp at

the time the first ADXL sample was collected for that page.

Table 10: ADXL Page Structure

ADXL PAGE (128 bytes)

0 1-2 3 - 127

ADXL PAGE

HEADER
PAGE TIME STAMP ADXL SAMPLES ARRAY

see below RTC time @ start of page (low-order WORD
only)

Compressed 13-bit X,Y,Z-axis
samples
0 – 24

(125 ms)
see below

BYTE WORD ADXL Sample[25]

Each ADXL Page Header points back to its Ball Record Pointer in the Ball Pointer Page.

Table 11: ADXL Page Header Structure

ADXL PAGE HEADER

7 6 5 4 3 2 1 0

PAGE TYPE BITS BALL RECORD #

0 1 0 – 61

ADXL Page Type – 01xxxxxxb Ball index from Ball Pointer Page

BYTE

36

3.3.9 ADXL Sample

The ADXL Samples that are stored in an ADXL Page are compressed versions of the 6-byte samples that

are retrieved from the ADXL345. Each axis reading is 13-bits, originally left-justified into a 16-bit value.

The most significant 13-bits of each axis reading are compressed into a 5-byte sample, before being

copied to the ADXL Page. The X-, Y-, and Z-axis most significant bytes (MSBs) are kept intact so that

those values can be easily isolated and tested during sampling. Their respective least significant bytes

(LSBs) are compressed into the remaining 2 bytes, as shown. Essentially, the Z-axis LSB bits are allocated

to the unused X-axis and Y-axis LSB bits, and then the original Z-axis LSB is discarded, which compresses

the 6-byte sample into a 5-byte sample.

Table 12: ADXL Sample Structure (compressed)

ADXL SAMPLE (5 bytes - compressed)

0 1 2 3 4

X-AXIS (LSB), Z-AXIS (LSB) X-AXIS (MSB) Y-AXIS (LSB), Z-AXIS (LSB) Y-AXIS(MSB) Z-AXIS (MSB)

7 6 5 4 3 2 1 0 bits 15-8 7 6 5 4 3 2 1 0 bits 15-8 bits 15-8

X-axis LSB
bits 7-3

unused Z-axis LSB
bits 7-6

Y-axis LSB
bits 7-3

Z-axis LSB
bits 5-3

BYTE BYTE BYTE BYTE BYTE

37

3.4 MainLoop
The SenseModule embedded software is structured around a variation of an interrupt and event-driven

“super loop” architecture; MainLoop is the SM’s super loop process (see Figure 6). MainLoop

progresses through a series of processing modes, directed by certain events, each of which is indicated

by a unique event flag (EF). Several of the processing modes – specifically CommandMode,

ApproachMode, and SampleMode, are each implemented as separate super loops. Each super loop

executes its specific function until conditions encountered during repeated execution of the loop result

in one or more EFs being set that eventually cause the loop to terminate, with control then returning to

MainLoop.

The initial entry point into MainLoop is through the ResetMode process (see Figure 7) after a reset

event occurs, but the normal execution path starts with the resumption of execution from within the

SleepMode process (see Figure 8) following a wake-up event.

The SM spends the vast majority of its time in a micro-power sleep state which is entered and exited

from within the SleepMode process. The SM awakens when ambient light is blocked from falling upon

the SM for a sufficient period. After waking from sleep, SM execution proceeds to the WakeUpMode

process (see Figure 9), which configures the P following SleepMode, and then identifies the wake-up

source.

If the wake-up source is valid (was initiated by the start-up circuit, and ambient light conditions are still

sufficiently dark), then WakeUpEF is set, and execution proceeds to determine which of two operational

branches to enter: sensor sampling, or command processing. If the wake-up source was not valid, then

SM execution proceeds directly to the CleanUpMode process (see Figure 13), before returning to

SleepMode.

If the ambient light is sufficiently dark for communications with ComModule, then the SM prompts the

CM. If the CM responds, CommandReceivedEF is set after the prompt, and the SM proceeds to the

CommandMode process (see Figure 10). The SM can repeatedly loop through CommandMode,

sequentially processing a string of commands. When CommandReceivedEF is no longer set coming out

of CommandMode, the SM proceeds to CleanUpMode, and then returns to SleepMode.

If the ambient light level condition was not sufficient for communication with the CM, or the CM did not

respond to the prompt, the SM takes the sensor sampling branch, where the SM samples and stores the

light and ADXL waveforms. The sensor sampling branch is composed of two processes: ApproachMode

(see Figure 11) and SampleMode (see Figure 12), both of which are also super loops.

ApproachMode and SampleMode have similar functionality, with all data begin collected and stored in

two circular buffers, one for ambient light samples, and one for ADXL samples. The major difference

between the two modes is that in ApproachMode, no data is transferred to the EEPROM. Rather, the

two sample buffers are used to implement a “pre-release” function, capturing the several seconds of

sensor data that immediately precede release of the ball.

38

Upon a valid release of the ball (ReleaseDetectedEF), the SM immediately switches from

ApproachMode to SampleMode. The SM continues to collect and store new sensor data in the circular

buffers, but the SM also starts to commit (write) the sample pages currently stored in those buffers to

EEPROM as part of the new Ball Record. Existing pages are written from the circular buffer tail, while

new data is stored in the page currently at the head of the buffer.

The SM stops collecting sensor data when it detects that the ball has stopped rolling or the maximum

number of light and ADXL pages have been collected. The SM exits SampleMode after it has committed

the last of the collected sample pages to memory, and proceeds to CleanUpMode, before returning to

SleepMode.

If a valid release was not detected during ApproachMode, the SM skips SampleMode and proceeds to

CleanUpMode, before returning to SleepMode.

39

Figure 6: SenseModule MainLoop

SleepMode WakeUpMode

Prompt

ComModule

SampleMode

CleanUpMode

CommandMode

ResetMode

 ComModule

EF?

Command

Received

EF?

Release

Detected

EF?

Yes

Yes

No

No

No Yes

Command

Received

EF?

YesNo

Parse Command
Disable Serial

Communications

WakeUp

EF?

Yes No

ApproachMode

WAKE UP SOURCES

 Light Startup (CP0)

 RTC Alarm (24 hours)

 RTC Failure

RESET SOURCES

 Hardware

 Software

40

3.5 ResetMode Process
Reset events can be triggered by hardware or software events, but occur rarely. Typical hardware reset

events include loss-of-power detection, resulting from replacement of the battery, or from a watchdog

timeout. Software reset events are issued as the result of built-in-test functions that detect anomalous

conditions within the hardware, such as a CRC failure in the EEPROM, an RTC failure, or an unresponsive

external peripheral, such as the ADXL345 chip.

Following any type of hardware or software reset event, the P incorporates a fixed hardware delay, to

allow its internal hardware functions to stabilize, including the system clock, and then starts execution at

its reset vector address, which jumps to the ResetMode process (see Figure 7). ResetMode takes care

of configuring the internal hardware functions (reset sources, watchdog, oscillators, smaRTClock),

assigning port pin functionality, and finally enabling the interrupts.

41

Figure 7: ResetMode Process

Enter ResetMode
operationMode = RESET

InitWatchdog

InitOscillators

InitPorts

ConfigureSmaRTClock

Enable Interrupts

Exit ResetMode

(proceed to SleepMode)

InitResetSources

42

3.6 SleepMode Process
The SenseModule always returns to SleepMode (see Figure 8) at the end of every iteration through the

main processing loop (as well as the rare occasion when it is coming out of ResetMode). It handles an

orderly shutdown of the various internal P hardware functions and external peripherals, and then

places the P in an internal micro-power sleep mode. The SM spends the vast majority of the time in

SleepMode, waiting for a wake-up event to occur. While in SleepMode, only two internal hardware

functions are enabled: the smaRTClock and CP0, which serves as the ambient light start-up source.

There are three events that can wake the P from its internal sleep mode:

1) Ambient light start-up – a light-to-dark transition of sufficient length causes the P’s CP0

comparator to issue a wake-up event so that the SenseModule can start sampling.

2) Real Time Clock (RTC) 24-hour alarm – the smaRTClock reaches 24 hours, and issues a wake-up

event so that the P can update the RTC date.

3) RTC failure – the smaRTClock has failed, which issues a wake-up event so that the P can

reconfigure the smaRTClock, and hopefully recover from the failure.

Upon waking up, SleepMode determines the source of the wake-up event. If an ambient light wake-up

event is detected, the SM exits SleepMode, and returns to MainLoop, which then calls WakeUpMode.

Note that SleepMode does not enable any peripherals; WakeUpMode is responsible for that task.

If an RTC alarm awoke the SM, SleepMode processes the alarm event. If an ambient light wake-up

event is not also present, SleepMode then puts the SM back to sleep.

If the source is from an RTC failure, SleepMode processes the event, and then issues a software reset.

43

Figure 8: SleepMode Process

Enter SleepMode
operationMode = SLEEP

DisableLightSampling

DisableSerialRCV

DisableSerialTRX

InitCP0forWakeUp

Coming from

CommandMode?

Wait for Serial Shutdown

Clear CP0 edge flags

Was

there an RTC

event?

ProcessRTCAlarmEvent

Configure uP for SLEEP

(uP enters SleepMode)

Recover from SLEEP

Wake

due to RTC

failure?

ProcessRTCFailEvent

Was

there another

RTC event?

Wake

from RTC

Alarm?

ProcessRTCAlarmEvent

Wake

from Startup (CP0)

event?

Exit SleepMode

(proceed to WakeUpMode)

No

Yes

Yes

No

No

No

Yes

Yes

No

No

Yes

Yes

WAKE UP SOURCES

 Light Startup (CP0)

 RTC Alarm (24 hours)

 RTC Failure

Software Reset

(return to MainLoop)

44

3.7 WakeUpMode Process
The SenseModule enters WakeUpMode (see Figure 9) upon detection of an ambient light start-up event

coming out of SleepMode. WakeUpMode handles an orderly start-up of the P and its peripherals, and

then starts ambient light sampling. WakeUpMode samples the ambient light background to detect

which type of start-up condition exists before passing execution back to MainLoop, which then decides

how to proceed, based on the status of the two EFs (ComModuleEF, WakeUpEF) that WakeUpMode can

set.

In order for ComModuleEF to get set, the ambient light level must remain below the ComModule

threshold for a minimum # of sample times, within the WakeUp time out period.

Similarly, in order for WakeUpEF to get set, the ambient light level must remain below the WakeUp

threshold for a minimum # of sample times, within the WakeUp time out period.

The CM threshold is lower (darker) than the WakeUp threshold – thus if ComModuleEF is set, then

WakeUpEF is set, as well. Ambient light sampling is halted when either EF is set, or when the WakeUp

timeout is reached. If WakeUpEF has been set, WakeUpMode checks the integrity of the EEPROM

database, and fetches the ConfigPage from EEPROM and places it into P RAM.

Processing then returns to MainLoop, which then decides whether to proceed with execution of the

loop (WakeUpEF is set), or return the SM to SleepMode (WakeUpEF did not get set, which is the result

of an invalid start-up condition).

45

Enter WakeUpMode

operationMode = WAKEUP

Configure System Clock

Initialize All States and Event Flags

Configure Light Sampling

Enable Interrupts

Enough

ComModule

samples?

WakeUp

Time Out?

Wait for Light Sample

(uP enters Idle Mode)

Enough

WakeUp

samples?

Valid

ComModule

sample?

Valid

WakeUp

sample?

Count valid ComModule samples

Count valid WakeUp samples

Exit WakeUpMode

(return to MainLoop)

Yes

No

Yes

Yes

No

No

Yes

Yes

No

No

Disable Light Sampling

Check DB Integrity

Fetch Config Values from DB

WakeUp

EF?

Yes

No

Set

ComModule

EF

Set WakeUp

EF

Light Sample EF

Figure 9: WakeUpMode Process

46

3.8 CommandMode Process
CommandMode (see Figure 10) processes all commands received from the ComModule. MainLoop

handles detecting the presence of the CM, receiving and parsing the command string, and then handing

off execution of the command to CommandMode. CommandMode executes the requested command.

There are four basic commands:

1) Read EEPROM Page

2) Read Ball Record

3) Write EEPROM Page

4) Set EEPROM Defaults

Command reception and processing is implemented within a loop structure in MainLoop so that

multiple commands can be received and processed during a single SenseModule wake cycle. After all

command processing has been completed, or after a command error has been detected,

CommandMode terminates, and returns control to MainLoop.

Appendix C (page 118) details the communication protocols used between the ComModule and the

SenseModule, including the ComModule detection protocol, and the implementation and timing

diagrams for the software UART.

3.8.1 Read EEPROM Page Command

The Read EEPROM Page command reads 128-byte EEPROM pages starting at the requested page, and

transmits them to the CM, one page at a time. After the CM receives the transmitted page, it can either

terminate the command, or it can issue a “next page” response, and the SM will transmit the next

contiguous page in EEPROM memory. Thus, it is possible for the CM to request any number of

contiguous EEPROM pages within one command.

3.8.2 Read Ball Record Command

The Read Ball Record command is a special version of the Read EEPROM Page command that requests

EEPROM pages by specifying a Ball Record number, or by requesting the newest ball record. There is

also a provision in the command for requesting the next ball record (which is the oldest ball record that

the CM has not yet uploaded. The Read Ball Record command looks up the Ball Page address for the

specified Ball Record, and then issues requests via the Read EEPROM command to retrieve the

necessary EEPROM pages, one-at-a-time, for transmission to the CM.

3.8.3 Write EEPROM Page Command

The Write EEPROM Page command writes data to the EEPROM at the specified page. This is the only

command that can also specify individual bytes within a page. The command is used primarily to

configure the SM’s system parameters on the Configuration page.

3.8.4 Set Defaults Command

This command is used to return the SM back to a default state. It clears the entire EEPROM, and then

sets the Configuration page and the Ball Pointer page to default values.

47

Figure 10: CommandMode Process

Enter CommandMode

operationMode = COMMAND

Fetch ConfigPage from DB

Initalize Retry information

 trxRetryCount = 0

 trxRetryPage = none

Read Ball

Command?
ProcessReadBallCommand

Yes

Read Page

Command?

Yes

Write Page

Command?

Yes

ProcessCommandError
Valid

Command?

ProcessReadPageCommand

ProcessWritePageCommand

ProcessSetDefaultsCommand

Yes

No

No

No

No

Exit CommandMode

(return to MainLoop)

48

3.9 ApproachMode Process
ApproachMode (see Figure 11), followed by SampleMode, collaborate to detect, capture, and store the

ambient light and 3-axis accelerometer sensor readings. ApproachMode manages the sampling process

commencing with the bowler’s approach, and continuing through release detection, at which time it

hands the sampling duties off to SampleMode, which continues sampling during the ball’s traversal of

the lane, and through the ball’s contact with the pins.

During ApproachMode, all samples are collected and stored within pages in the light and ADXL circular

buffers. Those buffers accumulate the most recent three (3) seconds of sensor readings immediately

preceding release of the ball, essentially implementing pre-trigger buffers, with release serving as the

trigger. ApproachMode does not commit any data to EEPROM; rather it captures Light and ADXL

samples and stores them in their respective circular buffers, whose contents it hands off to

SampleMode after release is detected. SampleMode takes care of committing the sensor data

collected during the bowler’s approach to EEPROM while it continues sampling, placing the new samples

at the heads of the circular buffers, while transferring sample pages from the tails of the buffers to

EEPROM.

The SenseModule enters ApproachMode after MainLoop has determined that a valid wake-up condition

occurred (WakeUpEF is set), and that the presence of the ComModule was not detected within the CM

detection period after waking up from SleepMode.

Before sampling commences, ApproachMode retrieves the location of the next available Ball Record

Pointer and Ball Page from the Configuration Page in EEPROM. It then initializes the light and ADXL

circular buffers, wakes up the light and ADXL sensors, configures the ADXL sensor, initializes the release

and shutdown variables, and initiates waveform sampling.

ApproachMode then puts the P into a low-power IdleMode while waiting for any of a number of

sampling-related interrupts to occur. Those interrupts periodically cause the P to vector from

IdleMode to their respective interrupt vectors – it is possible to have additional interrupts trigger while

processing the interrupt that pulled the P out of IdleMode. Each triggered interrupt performs its

function, and then sets one or more event flags, as appropriate.

Upon return from the last interrupt vector that was processed coming out of IdleMode, ApproachMode

captures a copy of the current EFs, before resetting the EFs. Execution proceeds to the event flag

processing loop, which processes all of the captured EFs that have been set since the last iteration of the

EF loop (it is possible to have multiple EFs to process in a single loop). There is a fixed round-robin

priority order to EF processing – processing of certain early (high-priority) EFs can trigger additional

lower-priority EFs that will be processed later in the EF loop.

It is also possible for further interrupts to occur while processing the current set of EFs. Those additional

interrupts, occurring subsequent to the beginning of EF processing, are processed as they occur, but any

EFs they set are accumulated for the next iteration of the EF loop. Thus, when the current EF loop

terminates, and ApproachMode is ready to return the P to IdleMode, a check is first performed to

49

identify any additional EFs that may have accumulated during the previous iteration of the loop. If any

such EFs exist, then the return to IdleMode is skipped, and a new iteration of the EF loop commences.

Eventually, there will be no new EFs, and the P will return to IdleMode.

The iterative process of waiting in IdleMode, and then processing interrupts and EFs continues until

release is detected, or the release timeout expires. If release is not detected within the time out period,

then all sampling processes are shutdown, the collected sample data is discarded, ApproachMode

terminates, and execution returns to MainLoop, which skips SampleMode, and proceeds to

CleanUpMode and ultimately back to SleepMode.

If release is detected, then ReleaseEF is set, sampling is allowed to continue, ApproachMode

terminates, and execution returns to MainLoop, which then calls SampleMode to take over the

sampling process. The EF loops for ApproachMode and SampleMode are quite similar, and both modes

respond to the same interrupts. The main differences between the two processes are:

1) ApproachMode terminates upon detection of release, or upon reaching release timeout.

SampleMode terminates upon detection of shutdown, or upon reaching shutdown timeout.

2) Both processes store samples at the heads of the sample buffers. However, ApproachMode

does not transfer sample pages to EEPROM. Rather, its purpose is to implement a “pre-

trigger” process that collects the samples immediately preceding release. As soon as

SampleMode commences, it begins committing the contents of the circular buffers at the

tails of the buffers to EEPROM, while continuing to store the latest sample data at the heads

of the buffers. This is a classic producer-consumer problem: SampleMode must be able to

transfer circular buffer pages to EEPROM (consume) faster than it stores new pages in those

circular buffers (produce).

Processing of ApproachMode event flags proceeds in the following order:

3.9.1 ProcessSampleClockEvent (SampleClockEF)

SampleClockEF is set by the Light Sample Timer interrupt and serves as the “clock tick” for release

timeout. ProcessSampleClockEvent counts the Sample Clock ticks, and checks the count against the

release time out value. If the release time out expires before release is detected, ApproachModeTOEF

is set, sampling is disabled, and ApproachMode terminates.

3.9.2 ProcessLightSamplesEvent (LightSamplesEF)

LightSamplesEF is set by the ADC0 interrupt (Light Sampling ADC) when the Light Samples buffer is full.

ProcessLightSamplesEvent transfers the buffer contents to the Light Page at the head of the Light

circular buffer. When the current Light page is full, it advances the head pointer to the next page. The

Light release condition is checked here. If Light release is detected, LightReleaseEF is set.

3.9.3 ProcessADXLWatermarkEvent (ADXLWatermarkEF)

ADXLWatermarkEF is set by the Port 0 Interrupt when the ADXL345 issues a Watermark interrupt upon

reaching 25 ADXL samples in its internal buffer. If ProcessSamplePageEvent has not already initiated

50

the ADXL page transfer, then ADXLReadPageEF is set for processing by ProcessI2CControlEvent later in

the EF loop.

3.9.4 ProcessADXLSampleEvent (ADXLSampleEF)

ADXLSampleEF is set by the SMBUS0 interrupt (I2C) whenever it has buffered and compressed an ADXL

sample into 5-bytes. ProcessADXLSampleEvent transfers the 5-byte sample to the current ADXL sample

page. If the current sample page has been filled, this routine advances the ADXL circular buffer head

pointer to the next page. The ADXL release condition is tracked here, and if ADXL release is detected,

ADXLReleaseEF is set.

3.9.5 ProcessI2CControlEvent (all EFs)

ProcessI2CControlEvent is the “traffic cop” for the I2C bus (SMBUS0). The I2C bus is a shared resource

between the ADXL345 and the serial EEPROM, and connects both the ADXL345 and the EEPROM to the

microprocessor. ProcessI2CControlEvent is in charge of prioritizing competing requests, and assigns and

manages “ownership” of the I2C bus. The routine also helps manage the Light and ADXL Circular Page

Buffers. After this routine assigns “ownership” of the I2C bus, ProcessSamplePageEvent handles

initiating the actual transfer of individual sample pages over the I2C bus.

There are three types of actions competing for the I2C resource: ADXL Page Reads, Light Page Writes,

and ADXL Page Writes. However, since there are no Light or ADXL Page Writes to EEPROM during

ApproachMode, only ADXL Page Reads can occupy the I2C bus during ApproachMode.

3.9.6 ProcessSamplePageEvent (I2C mutex, I2C retry)

ProcessSamplePageEvent takes care of initiating the transfer of data via the I2C bus, based on the

“ownership” of the I2C bus as determined and assigned by ProcessI2CControlEvent. If the I2C mutex is

available, or the last attempt to initiate I2C communications failed (because the EEPROM was still busy

writing the previous page), then ProcessSamplePageEvent calls the event processing routine for the I2C

action that currently has ownership of the I2C bus. Since there are no Light or ADXL Page Writes to

EEPROM during ApproachMode, ProcessSamplePageEvent only calls ProcessReadADXLPageEvent

during ApproachMode.

3.9.7 ProcessReadADXLPageEvent (ADXLReadPageEF)

ProcessReadADXLPageEvent is called from ProcessSamplePageEvent. It sets up the new ADXL page at

the head of the ADXL circular buffer, and then initiates the I2C bus request.

51

WaitForSamplingEvent

(uP enters IdleMode)

Release

TimeOut?
DisableADXLSampling

DisableLightSampling
Set ApproachMode TO EF

Light

Release?
Set Light Release EF

ADXL

Watermark

EF?

ProcessADXLWatermarkEvent

 clears ADXL Watermark EF

ADXL

Release?

Reset Light Release detection

counters

ProcessSampleClockEvent
 clears Sample Clock EF

ProcessLightSamplesEvent

 clears Light Samples EF

ProcessADXLSampleEvent
 clears ADXL Sample EF

ProcessI2CControlEvent
 prioritizesI2C ownership

 modifies I2C bus mutex

 modifies multiple EFs

 modifies states

Sample

Clock

EF?

Light

Samples

EF?

ADXL

Sample

EF?

I2C bus

available?

(mutex)

Light

Release

EF?

ADXL

Release

EF?

Set Release EF

Exit ApproachMode

(return to MainLoop)

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes

No

No

No

No

No No

No

No

No

No

Set ADXL Release EF

Read

ADXL

Page?

Set ADXL Read Page EF

No

APPROACHMODE EVENTS

 Any I2C Event

 Sample Clock EF

 Light Samples EF

 ADXL Watermark EF

 ADXL Sample EF

 ADXL Samples Read EF

ProcessSamplePageEvent
 clears retryI2C state

 If ADXL Read Page EF and ADXL

Read “owns” I2C bus and page

transfer has not been initiated:

 sets I2C bus mutex

 initiates I2C transfer

 indicates I2C transfer initiated

FETCH CONFIG VALUES FROM DB

 nextBall

 nextBallPage

Configure ADXL345

Configure ADXL345 Watermark

Configure Light Sampling

Initialize LightPage circular buffer head/

tail pointers

CAPTURE RTC TIME STAMPS

 Start of sampling

 1
st

 Light Page

 1
st

 ADXL Page

Configure BallPage (1
st

 LightPage)

Initialize ADXLPage circular buffer head/

tail pointers

Initlaize release detection counters

Initialize states and event flags

Enter ApproachMode

OpertionMode = APPROACH

Retry

Last I2C?

Yes

Figure 11: ApproachMode Process

52

3.10 SampleMode Process
SampleMode (see Figure 12) takes over where ApproachMode left off, essentially “inheriting” the state

of the SenseModule from ApproachMode. Where ApproachMode managed collecting sample data

during approach and release, SampleMode handles sampling from immediately after release through

the ball’s impact with the pins.

ApproachMode “primed” the Light and ADXL circular buffers with the most recent three (3) seconds of

sensor readings that immediately preceded detection of release. After ApproachMode has detected a

valid release condition, SampleMode takes care of committing (writing) the sensor data collected during

ApproachMode to EEPROM while it also continues sampling, placing the new samples at the heads of

the circular buffers, while transferring sample pages from the tails of the buffers to EEPROM.

The SM enters SampleMode after MainLoop has determined that a valid release condition occurred

(ReleaseDetectedEF is set) during ApproachMode. At the start of SampleMode, the sample page

counters, sample time out detection, and sample shutdown detection are all initialized.

As with ApproachMode, SampleMode returns the P to IdleMode while waiting for any of a number of

sampling-related interrupts to occur. Each triggered interrupt performs its function, and then sets one

or more event flags, as appropriate. Upon return from the last interrupt vector that was processed

coming out of IdleMode, SampleMode captures a copy of the current EFs, before resetting the EFs.

Execution proceeds to the SampleMode event flag processing loop, which processes all of the captured

EFs that have been set since the last iteration of the EF loop (it is possible to have multiple EFs to

process in a single loop). There is a fixed round-robin priority order to EF processing – processing of

certain early (high-priority) EFs can trigger additional lower-priority EFs that will be processed later in

the EF loop.

It is also possible for further interrupts to occur while processing the current set of EFs. Those additional

interrupts, occurring subsequent to the beginning of EF processing, are processed as they occur, but any

EFs they set are accumulated for the next iteration of the EF loop. Thus, when the current EF loop

terminates, and SampleMode is ready to return the P to IdleMode, a check is first performed to

identify any additional EFs that may have accumulated during the previous iteration of the loop. If any

such EFs exist, then the return to IdleMode is skipped, and a new iteration of the SampleMode EF loop

commences. Eventually, there will be no new EFs, and the P will return to IdleMode.

The iterative process of waiting in IdleMode, and then processing interrupts and EFs continues until

automatic shutdown is detected (LightShutdownEF and ADXLShutdownEF are set), or the sample

timeout expires before shutdown is detected (SampleModeTOEF is set). In either case, SampleMode

continues writing sample pages to EEPROM until the circular buffers are both empty. All sampling

processes are shutdown, and after the conclusion of sample page transfer to EEPROM, NewBallEF is set

to indicate that there is New Ball Record stored in EEPROM. Execution then returns to MainLoop,

where CleanUpMode takes care of updating the Configuration Page, before the SM returns to

SleepMode.

53

The event flag loop for SampleMode is quite similar to that for ApproachMode, and responds to the

same interrupts. However, SampleMode handles the following additional events:

1) SampleMode both collects new sample pages, as well as commits (writes) previously collected

sample pages to EEPROM. Thus, it must manage three tasks that utilize the I2C bus resource. As

soon as SampleMode commences, it begins committing the current page contents of the

circular buffers to EEPROM, beginning at the tails of the buffers, while continuing to store the

latest sample data to the pages at the heads of the buffers. This is a classic producer-consumer

problem: SampleMode must be able to consume pages (transfer circular buffer pages to

EEPROM), faster than it produces pages (stores new pages in those circular buffers).

2) SampleMode detects the automatic sampling shutdown condition, as well as tracks sampling

timeout.

Processing of SampleMode event flags proceeds in the following order:

3.10.1 ProcessSampleClockEvent (SampleClockEF)

SampleClockEF is set by the Light Sample Timer interrupt and serves as the “clock tick” for automatic

sampling shutdown detection. The Light and ADXL time out events are captured elsewhere, by checking

for the maximum number of pages that can be captured during sampling.

3.10.2 ProcessLightSamplesEvent (LightSamplesEF)

LightSamplesEF is set by the ADC0 interrupt (Light Sampling ADC) when the Light Samples buffer is full.

ProcessLightSamplesEvent transfers the buffer contents to the Light Page at the head of the Light

circular buffer. When the current Light page is full, it advances the head pointer to the next page. The

Light shutdown condition is checked here. If Light shutdown is detected, LightShutdownEF is set.

3.10.3 ProcessADXLWatermarkEvent (ADXLWatermarkEF)

ADXLWatermarkEF is set by the Port 0 Interrupt when the ADXL345 issues a Watermark interrupt upon

reaching 25 ADXL samples in its internal buffer. If neither the ADXL sampling shutdown condition nor

the ADXL sampling timeout condition have been detected, then ADXLReadPageEF is set for processing

by ProcessI2CControlEvent later in the EF loop.

3.10.4 ProcessADXLSampleEvent (ADXLSampleEF)

ADXLSampleEF is set by the SMBUS0 interrupt (I2C) whenever it has buffered and compressed an ADXL

sample into 5-bytes. ProcessADXLSampleEvent transfers the 5-byte sample to the current ADXL sample

page. If the current sample page has been filled, this routine advances the ADXL circular buffer head

pointer to the next page. The ADXL sampling shutdown condition is tracked here, and if detected,

ADXLReleaseEF is set, and ADXL sampling is disabled.

3.10.5 ProcessI2CControlEvent (all EFs)

ProcessI2CControlEvent is the “traffic cop” for the I2C bus (SMBUS0). The I2C bus is a shared resource

between the ADXL345 and the serial EEPROM, and connects both the ADXL345 and the EEPROM to the

microprocessor. ProcessI2CControlEvent is in charge of prioritizing competing requests, and assigns and

manages “ownership” of the I2C bus. The routine also helps manage the Light and ADXL Circular Page

54

Buffers, and the Light and ADXL sampling timeouts. After this routine assigns ownership of the I2C bus,

ProcessSamplePageEvent handles initiating the actual transfer of individual sample pages over the I2C

bus.

There are three types of events competing for the I2C resource: ADXL Page Reads (ADXLReadPageEF),

Light Page Writes (LightWritePageEF), and ADXL Page Writes (ADXLWritePageEF).

ProcessI2CControlEvent processes and prioritizes all three. When it detects that the I2C bus is available

for assignment (has completed its most recent task, or is idle when an EF comes in), it assigns new

ownership based on the following prioritization conditions:

1) ADXLReadPageEF has the highest priority, as the ADXL345’s internal sample buffer must be

read before it overflows. The ADXLWatermarkEF is issued when the ADXL sample buffer has

reached 25 samples (every 125 ms). The ADXL sample buffer can hold a maximum of 32

samples, which leaves 35 ms to start reading the buffer contents (at 200 Hz, 5 ms per sample).

2) LightWritePageEF receives a higher priority than ADXLWritePageEF under one condition. The

first Light page also doubles as the Ball Page (the first page of any Ball Record). Thus, the first

Light page must be the first page written to EEPROM for a new Ball Record.

3) ADXLWritePageEF and LightWritePageEF have equal priorities, with the exception of 2) above.

When both types of pages are available in the sample buffers, priority alternates between the

ADXLWritePageEF and the LightWritePageEF, so that neither event suffers from “starvation”,

which prevents overflow of either circular buffer, while the other is being serviced. In actuality,

there are eight (8) ADXL pages generated for each Light page, since an ADXL page fills up in 125

ms, as opposed to a Light page, which takes 1 second to fill up. However the alternate page

writing scheme is sufficient to prevent starvation.

3.10.6 ProcessSamplePageEvent (I2C mutex, I2C retry)

ProcessSamplePageEvent takes care of initiating the transfer of data via the I2C bus, based on the

ownership of the bus as determined and assigned by ProcessI2CControlEvent. If the I2C mutex is

available, or the last attempt to initiate I2C communications failed (because the EEPROM was still busy

writing the previous page), then ProcessSamplePageEvent calls the event processing routine for the I2C

action that currently has ownership of the I2C bus. Those event processing routines are

ProcessReadADXLPageEvent, ProcessWriteLightPageEvent, and ProcessWriteADXLPageEvent.

3.10.7 ProcessReadADXLPageEvent (ADXLReadPageEF)

ProcessReadADXLPageEvent is called from ProcessSamplePageEvent. If ADXL sampling has not timed

out, it sets up the new ADXL page at the head of the ADXL circular buffer, and then initiates the I2C bus

request.

3.10.8 ProcessWriteLightPageEvent (LightWritePageEF)

ProcessWriteLightPageEvent is called from ProcessSamplePageEvent. It stores the current Ball Record

page number into the Light Page located at the tail of the buffer, sets the Light Buffer page location to

be written to EEPROM, as well as the destination EEPROM page address, and initiates the I2C request.

55

3.10.9 ProcessWriteADXLPageEvent (ADXLWritePageEF)

ProcessWriteADXLPageEvent is called from ProcessSamplePageEvent. It stores the current Ball Record

page number into the ADXL Page located at the tail of the buffer, sets the ADXL Buffer page location to

be written to EEPROM, as well as the destination EEPROM page address, and initiates the I2C request.

56

WaitForSamplingEvent

(uP enters IdleMode)

Light

Shutdown?
Set Light Shutdown EF

ADXL

Watermark

EF?

ProcessADXLWatermarkEvent

 clears ADXL Watermark EF

ADXL

Shutdown?
Disable ADXL Sampling

Enter SampleMode

operationMode = SAMPLE

ProcessSampleClockEvent

 clears Sample Clock EF

ProcessLightSamplesEvent

 clears Light Samples EF

ProcessADXLSampleEvent

 clears ADXL Sample EF

ProcessI2CControlEvent
 prioritizes I2C ownership between

ADXL Page Read, Light Page

Write, ADXL Page Write EFs

 modifes I2C bus mutex

 modifies multiple EFs

 modfies states

Sample

Clock

EF?

Light

Samples

EF?

ADXL

Sample

EF?

Set SampleMode TO EF

Exit SampleMode

(proceed to CleanUpMode)

ADXL

or Light SD

EFs?

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Set ADXL Shutdown EF

Read

ADXL

Page?

Set ADXL Read Page EF

No

SAMPLEMODE EVENTS

 Any I2C Event

 Sample Clock EF

 Light Samples EF

 ADXL Watermark EF

 ADXL Sample EF

 ADXL Samples Read EF

 Page Written EF

Set New Ball EF

ADXL

and Light TO

EFs?

Yes

No

Disable ADXL Sampling

Disable Light Sampling

I2C bus

available?

(mutex)

Retry

last I2C?

Yes

Yes

No

No

ProcessSamplePageEvent
 clears retryI2C state

 if ADXL Read Page, Light Write

Page, or ADXL Write Page EF, and

the EF “owns” the I2C bus and

page transfer has not been

initiated:

 sets I2C bus mutex

 initiates I2C transfer

 indicates I2C transfer initiated

Initialize sample page counters

Initialize time out detection

Initialize shutdown detection

Yes

Figure 12: SampleMode Process

57

3.11 CleanUpMode Process
MainLoop calls CleanUpMode (see Figure 13) to handle any remaining processing after coming out of

WakeUpMode, CommandMode, ApproachMode, or SampleMode.

Currently, there is nothing additional to be done when coming into CleanUpMode from WakeUpMode

or ApproachMode, and CleanUpMode returns immediately to MainLoop so that the SenseModule can

return to SleepMode.

3.11.1 CommandMode Clean Up

Following the termination of CommandMode, CleanUpMode turns off serial reception and

transmission, and retrieves the Ball Pointer Page from EEPROM, and generates a new count of the new

and deleted Ball Records. New ball records are those that have not yet been uploaded to the

ComModule. Deleted Ball Records are those records that have been at least partially overwritten by

more recent Ball Records.

CleanUpMode then retrieves the Configuration Page from EEPROM so that it can update the following

Ball Record database parameters:

 firstNewBall

 newBallCount

 deletedBallCount

After the above parameters have been updated, the Configuration Page is written back to EEPROM, and

CleanUpMode terminates and returns to MainLoop, so that the SenseModule can return to SleepMode.

3.11.2 SampleMode Clean Up

Following the termination of SampleMode, CleanUpMode first checks that a new ball has been

captured. As SenseModule development continues, there will be some post-processing of the potential

new ball record to verify that it resulted from a legitimate waveform, and not from a false start-up

condition, such as that generated during the return of the ball from the pin setting machine, through the

subway, to the ball return. Such false start-up conditions have already been observed on occasion

during initial SM testing.

Currently, whenever SampleMode terminates, it indicates that it has captured a new ball, and

CleanUpMode retrieves the Ball Page for the new ball from EEPROM (first page of the new Ball Record),

and updates the following Ball Record information for the new ball:

 Ball Page header

 sampleCount

 ballDate

 ballTimeStamp

 endTimeStamp

 lightPages

 adxlPages

After the Ball Page has been updated, CleanUpMode commits it back to EEPROM.

58

CleanUpMode then retrieves the Ball Pointer Page from EEPROM, and updates all of the Ball Record

Pointers for which any of their corresponding Ball Record pages were overwritten/deleted by the new

Ball Record. The Ball Pointer entry for the new ball is then updated, and the Ball Pointer Page is

committed back to EEPROM.

The last CleanUpMode task is to retrieve the Configuration Page from EEPROM and update the

following database parameters:

 ballCount

 newestBall

 nextBallPage

 fristNewBall

 newBallCount

 deletedeBallCount

 nextBall

After the above parameters have been updated, the Configuration Page is written back to EEPROM, and

CleanUpMode terminates, so that the SenseModule can return to SleepMode.

59

Enter CleanUpMode
operationMode = CLEANUP

Coming from

SampleMode?

New ball

captured?

Retrieve newBallPage from DB

Update newBallPage

 header

 sampleCount

 ballDate

 ballTimeStamp

 endTimeStamp

 lightPages

 adxlPages

Commit new BallPage to DB

Retrieve BallPointerPage from DB

Update BallPointerPage

 all BallPointers for BallRecords

overwritten/deleted by new BallRecord

 pointer for new BallRecord

Commit updated BallPointerPage to DB

Retrieve ConfigPage from DB

Update ConfigPage

 ballCount

 newestBall

 nextBallPage

 firstNewBall

 newBallCount

 deletedBallCount

 nextBall

Commit ConfigPage to DB

Coming from

CommandMode?

Disable serial reception

Disable serial transmission

Retrieve BallPointerPage from DB

Get counts for new and deleted BallRecords

Exit CleanUpMode

(proceed to SleepMode)

Retrieve ConfigPage from DB

Update ConfigPage

 firstNewBall

 newBallCount

 deletedBallCount

 trxRetryCount

 trxRetryPage

Commit ConfigPage to DB

NoYes

Yes
Yes

No No

Figure 13: CleanUpMode Process

60

3.12 Sampling Data Flow
The SenseModule’s main function is as a data collection platform for its two sensors:

1) Ambient Light Sensor (TSL13 Light-to-Voltage converter)

2) Acceleration and Tilt Sensor (ADXL345 3-axis accelerometer)

The sampling intervals and reading of the sensor data are all interrupt-driven, while storage of that

sensor data is event-driven. The following section describes how the various interrupts, events,

processes, and data structures relate to each other.

3.12.1 Ambient Light Sampling and Storage

The ambient light sampling data flow diagram is given in Figure 14. All ambient light samples are

initiated by an interrupt from the 240 Hz Light Sample Timer, which has two phases. The first phase

supplies power to the TSL13 Light-to-Voltage converter and sets the timer to interrupt again 100 s

later, allowing the TSL13's output to stabilize after power-up.

The second phase sets the timer back to phase 1 (240 Hz), and starts the ADC0 conversion process that

samples the TSL13 output. When the ADC conversion is complete, ADC0 issues a conversion complete

interrupt. The ADC0 interrupt starts the data flow process for light samples.

The ADC0 interrupt has three phases. The first two phases alternate every 4.167 s (240 Hz). The first

phase captures the first 240 Hz light sample of a pair of samples to be summed together. The second

phase captures the second sample of that pair, adds it to the first sample, takes the average of the two

samples, and stores the averaged reading into a 12-element sample buffer for later transfer to the Light

Page buffer. Thus, the resulting 120 Hz samples have been low-pass filtered to remove the 120 Hz ripple

induced in the ambient light readings by the overhead fluorescent lighting installed in most bowling

establishments. The second phase issues SampleClockEF.

The third phase occurs coincident with the second phase when the ADC0 Sample Buffer is full (every 100

ms, 12 averaged samples). The ADC0 interrupt transfers the buffer contents to the Light Sample Buffer

and issues LightSampleEF.

ProcessSampleClockEvent is called from within the ApproachMode and SampleMode event processing

loops when SampleClockEF is set, which counts the time stamps, and also takes care of tracking the

ApproachMode time out function while in ApproachMode.

ProcessLightSamplesEvent is called from within the ApproachMode and SampleMode event processing

loops when LightSamplesEF is set, and takes care of transferring the 12 Light samples from the Light

Sample Buffer to the Light Page at the head of the Light Page circular buffer. During SampleMode,

when the current Light Page has filled up (1 sec), LightPageEF is set, so that ProcessI2CControlEvent can

process the new Light Page.

61

0

1

2

LIGHT PAGE BUFFER

XDATA: 3 Light Pages

write index = lightPageHead

read index = lightPageTail

lightPageHead lig
htP

ageTail

LIGHT PAGE @ LIGHTPAGEHEAD

(IN LIGHT PAGE BUFFER)
128 bytes: 120 ADXL samples

index = lightIndex

LIGHT SAMPLE BUFFER

IDATA: 12 8-bit Light Samples

ADC0 SAMPLE BUFFER

IDATA: 12 8-bit TSL13 samples

LIGHT SAMPLE TIMER INTERRUPT (2 PHASES)
(240 Hz Sample Clock)

PHASE 1 - Every 4.667 ms (240 Hz):

 Enables TSL13 (100 us before start of conversion)

 Sets Sample Timer for 100 us interrupt (phase 2)

PHASE 2 – 100 us after phase 1

 Starts ADC0 sample conversion after TSL13 output

has stabilized

 Sets Sample Timer for 240 Hz interrupt (phase 1)

PROCESSLIGHTSAMPLESEVENT

On LightSamplesEF (every 100 ms - 12 light samples):

 Transfers Light Samples to Light Page Buffer Head

 Tracks Light Release Conditions (ApproachMode)

 Tracks Release TO Conditions (ApproachMode)

 Tracks Light Sample Shutdown Conditions (SampleMode)

When current Light Page is full (120 samples, every 1 sec):

 Sets LightPageEF (for ProcessI2CControlEvent)

ADC0 INTERRUPT (PHASE 1)

(ADC0 Conversion Complete)

Every 4.667 ms (240 Hz):

 Captures ADC0 conversion result from TSL13

 Adds conversion to ADC0 Sample Value

ADC0 INTERRUPT (PHASE 3)

(ADC0 Buffer Transfer)

Every 100 ms (12 samples):

 Transfers ADC0 Sample Buffer to Light Sample Buffer

for processing

 Sets LightSamplesEF

ADC0 SAMPLE VALUE

DATA: 8-bit TSL13 sample

ADC0 INTERRUPT (PHASE 2)

(Light Sample FIltering)

Every 8.333 ms (120 Hz),:

 Stores 120 Hz result in ADC0 Sample Buffer

 Resets ADC0 Sample Value to 0

 Sets SampleClockEF (for event processing)

Ambient Light Sampling Data Flow

To

SamplePageTransferDataFlow

Figure 14: Light Sampling Data Flow Diagram

62

3.12.2 Acceleration Sampling and Storage

The acceleration sampling data flow diagram is given in Figure 15. The ADXL345 collects 3-axis

acceleration samples autonomously at ~200 Hz, and accumulates the samples in its internal sample

buffer. When that buffer reaches 25 samples, the ADXL345 issues an interrupt via an external pin to the

P, which the Port 0 PortMatch interrupt interprets as an ADXL Watermark event. That interrupt sets

ADXLWatermarkEF, saves the last captured RTC time as the start time for the ADXL345’s current buffer

contents, and then captures the current RTC value for the next ADXL Watermark interrupt.

ProcessWatermarkEvent is called from within the ApproachMode and SampleMode event processing

loops when ADXLWatermarkEF is set, and if ADXL sampling has not already been shut down or timed

out, then it sets ADXLReadPageEF. While in SampleMode, it also counts the number of ADXL

Watermark events as an approximation for the total time spent in SampleMode (125 ms precision).

ProcessI2CControlEvent is called from within the ApproachMode and SampleMode event processing

loops, and initiates transfer of the ADXL345 sample buffer contents via SMBUS0 when the I2C bus next

becomes available.

The SMBUS0 interrupt handles retrieving the ADXL345 sample buffer contents using two phases. Phase

1 of the SMBUS0 interrupt reads sample bytes, one at a time, from the ADXL345’s buffer, and

accumulates them in the interrupt’s ADXL Buffer, until that buffer contains a complete ADXL sample (6

bytes). Phase 2 of the SMBUS0 interrupt transfers those bytes to the ADXL Sample Buffer, and sets the

ADXLSampleEF, so that ProcessADXLSampleEvent can then continue processing the ADXL sample during

event processing.

ProcessADXLSampleEvent is called from within the ApproachMode and SampleMode event processing

loops when ADXLSampleEF is set, and compresses the 6-byte ADXL sample in place into a 5-byte

sample. It then stores the sample in the ADXL Page at the head of the ADXL Page circular buffer.

ProcessADXLSampleEvent also tracks the ApproachMode ADXL Release condition, and the

SampleMode ADXL Shutdown condition, and initiates the transfer of the next ADXL sample, if the

current ADXL page has not been filled. When the page has been filled, ADXLPageEF is issued so that

ProcessI2CControlEvent can process the new ADXL page.

63

28 0
127

1415 1316

ADXL PAGE BUFFER

XDATA: 29 ADXL Pages

write index = adxlPageHead

read index = adxlPageTail

a
d
x
lP

a
g
e
H

e
a
d

adxlPageTail

ADXL PAGE @ ADXLPAGEHEAD

(IN ADXL PAGE BUFFER)
128 bytes: 25 5-byte ADXL samples

125 msecs

index = adxlIndex

ADXL WATERMARK INTERRUPT

(200 Hz ADXL Internal Clock)

ADXL accumulates 25 6-byte, 3-axis samples in

internal FIFO. Every 25 ADXL samples (125 ms),

ADXL issues Watermark interrupt to uP.

 Sets ADXLWatermarkEF

ADXL SAMPLE

IDATA: 6-byte uncompressed

ADXL sample

SMBUS0 INTERRUPT (PHASE 1)
Every byte:

 Moves I2C byte to 6-byte ADXL Sample Buffer

PROCESSWATERMARKEVENT

On ADXLWaterMarkEF (every 125 ms):

 Sets ADXLReadPageEF

 Tracks total time in SampleMode by counting

events

PROCESSADXLSAMPLEEVENT

On ADXLSampleEF

 Compresses 6-byte sample into 5 bytes in ADXL Sample

 Writes ADXL Sample to ADXL Page Buffer Head (SampleMode)

 Track ADXL Release Conditions (ApproachMode)

 Track ADXL Shutdown Conditions (SampleMode)

 Initiates next sample transfer (if still reading ADXL FIFO)

When current ADXL Page is full (25 ADXL samples, every 125 ms):

 Sets ADXLPageEF (for ProcessI2CControlEvent)

ADXL SAMPLE

IDATA: 5-byte compressed

ADXL sample

SMBUS0 INTERRUPT (PHASE 2)
Every 6 bytes

 Transfers ADXL Buffer to ADXL Sample

 Sets ADXLSampleEF

ADXL BUFFER

IDATA: 6-byte ADXL sample

Acceleration Sampling Data Flow

To

SamplePageTransferDataFlow

PROCESSI2CCONTROLEVENT

On ADXLReadPage EF:

 Assigns ownership of the I2C bus to

ADXLReadPage event as soon as the I2C bus

becomes available

PROCESSSAMPLEPAGE EVENT

On ADXLReadPage EF, I2C ownership, and

availability:

 Sets up a new ADXL Page in the ADXL Page

circular buffer.

 Initiates I2C transfer (SMBUS0 interrupt)

Figure 15: Acceleration Sampling Data Flow Diagram

64

3.12.3 Sample Page Transfer and Storage

The sample page transfer data flow diagram is given in Figure 16. ProcessI2CControlEvent (3.10.5) is

called on every iteration of the SampleMode event processing loop, after the primary data collection

events have been processed. This routine prioritizes competing I
2
C requests and assigns and manages

“ownership” of the I
2
C bus. It finds the next available pages in the Light and ADXL circular buffers, and

hands the locations of those pages off to ProcessSamplePageEvent (3.10.6) to initiate the I
2
C transfers.

During ApproachMode, there is only one active source for I2C events: ADXL Read Page events

(ADXLReadPageEF). Thus, there is no competition for the I2C bus during ApproachMode.

During SampleMode, however, there are three sources competing for the I2C bus:

1) ADXL Read Page events (ADXLReadPageEF)

2) Light Write Page events (LightWritePageEF)

3) ADXL Write Page events (ADXLWritePageEF)

ADXL Read Page events are initially triggered by ADXL Watermark events, and the page is transferred to

the P from the EEPROM via the I2C bus as a 150-byte stream (25 6-byte samples) – 150 separate

SMBUS0 interrupts must be processed in order to retrieve the ADXL345 buffer contents.

Light Write Page events are triggered whenever the Light Page circular buffer is not empty. Since that

buffer is full coming out of ApproachMode, Light Write Page events start being issued immediately after

SampleMode starts.

ADXL Write Page events are triggered whenever the ADXL Page circular buffer is not empty. Since that

buffer is also full coming out of ApproachMode, ADXL Write Page events also start being issued

immediately after SampleMode starts.

Thus, the start of SampleMode is the busiest time for the I2C bus, as SampleMode is constantly striving

to catch up on writing Light and ADXL pages from the tails of their respective circular buffers to the new

Ball Record in EEPROM, while also transferring new ADXL pages from the ADXL345’s sample buffer to

the head of the ADXL Page circular buffer, and storing new Light Samples at the head of the Light Page

circular buffer.

The Ball Record array located in EEPROM is also one large circular buffer. It spans 1022 pages, from

EEPROM page 2 to EEPROM page 1023. Ball Records are variable length, consisting of a Ball Page, and a

mix of Light Pages and ADXL Pages. The contents of those pages all come from the Light Page and ADXL

Page circular buffers, transferred via the I2C bus. The pages of a new Ball Record are written

contiguously to EEPROM, overwriting the existing contents. When EEPROM page 1023 is written, the

Configuration Page (page 0), and the Ball Pointer Page (page 1) are skipped over, and the next available

sample page is page 2.

65

PROCESSI2CCONTROLEVENT

On ADXLReadPageEF, LightPageEF, or ADXLPageEF:

 Prioritizes and assigns I2C ownership

 Selects sample page to transfer

 Sets SamplePageEF (if initiating new transfer)

 Manages Light and ADXL Page Buffer head and

tail pointers

 Tracks SampleMode time out conditions

 Tracks SampleMode shutdown conditions

PROCESSSAMPLEPAGEEVENT

On SamplePageEF - Initiates assigned sample page transfer based

on I2C ownership:

 reads ADXL FIFO (see ADXLSamplePageDataFlow)

 writes Light Page from Light Page buffer @ lightPageTail

 writes ADXL Page from ADXL Page Buffer @ adxlPageTail

1023
0

CFG
Page

1
Ptr

Page
1022

BALL RECORD DATABASE

128Kb I2C EEPROM

 Page 0: Config Page

 Page 1: Ball Pointer Page

 Page 2–1023: Ball Records (variable)

 Min: 14 @ 8 seconds (72 pages each)

 Max: 37 @ 3 seconds (27 pages each)

2

511
510

512
513

b
a
llF

irs
tP

a
g
e

b
a
llF

ir
s
tP

a
g
e
 +

b
a
llS

a
m

p
le

P
a
g
e
s

0

1

2

LIGHT PAGE BUFFER

XDATA: 3 Light Pages

write index = lightPageHead

read index = lightPageTail

lightPageHead lig
htP

ageTail

28 0
127

1415 1316

ADXL PAGE BUFFER

XDATA: 29 ADXL Pages

write index = adxlPageHead

read index = adxlPageTail

a
d
x
lP

a
g
e
H

e
a
d

adxlPageTail

From

LightSamplePageDataFlow
From

ADXLSamplePageDataFlow

Sample Page Transfer Data Flow Diagram

Figure 16: Sample Page Transfer Data Flow Diagram

66

Section IV: SenseModule Performance and Raw Data Collection
Although the SenseModule collects ambient light data similar to that of the original SMARTDOT module,

the 3-axis accelerometer waveforms that the SM was designed to record had not yet been collected or

observed. Additionally, the morphology, phase, and interrelation of those waveforms were needed in

order to develop the detection algorithms required for automatic operation of the SM. Thus, the

SenseModule has evolved through several iterations of hardware and embedded software from bench-

top prototype, to its initial incarnation as a manual raw data collection platform, to the fully functional

device presented in this paper. Those three phases of development are presented below.

1) Bench-Top Prototype: The initial development of the SenseModule and the ComModule was

conducted on breadboard prototypes utilizing F930DK development kits from Silicon

Laboratories [23]. The embedded software for both the SM and the CM was developed using

the Silicon Labs IDE, along with Keil’s assembler and C51 compiler [18]. Using the breadboard

prototypes, it was possible to evaluate the feasibility of the hardware design, develop the

fundamental architecture of the embedded software, the EEPROM data structures, and work

out the communication scheme between the SM, the CM, and the PC.

2) First-Look Data Collection: Until the first SenseModule made its way down the lane in a bowling

ball, only the very basic morphology of the 3-axis acceleration waveforms could be accurately

predicted. Ultimately, real-world acceleration data had to be collected to gain a better

understanding of those waveforms before a truly autonomous SM could be developed. The first

SM prototypes that could be placed under a finger insert in the ball were developed based on

the hardware design and embedded software from the bench top breadboard. The schematic

and printed circuit board drawings were generated using Eagle PCB layout software [19]. In

April of 2010, Advanced Circuits [30] manufactured the SenseModule printed circuit boards from

Gerber files generated from the schematic shown in Figure 2, and then Advanced Assembly [31]

assembled five SM prototypes using those PCBs. The earliest SM versions operated only in a

manual, one-shot mode, and were capable of collecting and storing just a single set of ambient

light and acceleration waveforms at a time. Several rounds of real-world data collection were

conducted from early-May through mid-June of 2010.

3) Autonomous Operation: The raw data waveforms collected during the rounds of testing in (2)

were then used to devise the first automated routines for the SenseModule. The fully

automated functionality of the SM evolved through iterative development and testing from late-

June through late-August of 2010, resulting in the SM’s automatic start-up, valid activation and

release detection routines, and automatic shutdown processes. This phase represents the state

of the SenseModule development as presented in this paper.

As with the SMARTDOT module, it must be noted that the author has been the sole user of the

SenseModule to this point in its development, and that all of the raw data waveforms collected and

presented in this paper were generated from the author’s particular bowling style. Thus, the automatic

detection algorithms currently implemented in the embedded software are undoubtedly biased towards

that style. Careful attention has been applied in attempting to design generic and robust detection

algorithms, but further extensive data collection and testing across multiple bowling styles must be

67

conducted, followed by additional analysis and refinement of the resulting raw data waveforms, in order

to insure truly robust and reliable autonomous SenseModule operation across a variety of users.

Appendix B (page 117) presents a side-by-side comparison of typical ambient light and impact data

recorded by the original SMARTDOT module and the SenseModule. Appendix E (page 125) includes graphs

of the raw data waveforms from the 18 Ball Records that were collected during the last testing session

of the SenseModule that utilized the hardware design and embedded software presented in this paper.

4.1 Physical Constraints
The SenseModule complies with all of the previously specified physical design constraints (2.1.1):

1) Transparent: Operation of the SenseModule requires no intervention on the part of the bowler,
and it is not physically intrusive under the finger insert. The SM automatically awakens from
SleepMode when the bowler picks up the ball and puts their fingers in the finger holes, and
records the sensor data starting with the bowler’s approach through the ball falling into the pit
at the end of the lane. When the bowler wants to upload the data, they place the ComModule
over the finger hole containing the SM, and the data is automatically transferred to the CM.

2) Small and Light Weight: The dimensions and weight of the SenseModule prototype are given in
Table 13 below. The SM prototypes were built on 1.60 mm (0.062”) thick PCBs, but 0.080 mm
(0.031”) thick PCBs could be used, reducing the weight by ~1.00 gm. Using a CR2016 90 mAh
battery would reduce the height and weight by 1.6 mm (0.063”) and 1.75 gm (0.044 oz),
respectively, but would also yield only 35% of the battery life. The dimensions and weight do
not include a plastic holder for the PCB and battery.

Table 13: SenseModule Dimensions

SenseModule As Built
As Built w/CR2032
225 mAh Battery

0.080 mm PCB w/CR2032
225 mAh Battery

0.080 mm PCB w/CR2016
90 mAh Battery

Diameter 24.2 mm (0.951”) -same - -same - - same -

Height 4.8 mm (0.190”) 8.0 mm (0.315”) 7.2 mm (0.285”) 5.6 mm (0.220”)

Weight 2.00 gm (0.071 oz) 5.25 gm (0.185 oz) 4.25 gm (0.150 oz) 2.50 gm (0.088 oz)

3) Low Cost: The component cost for the SenseModule comes in under $15 in quantity (10,000
pieces), including the battery, but excluding an as-yet-to-be-developed plastic case.

4) Low Power: The average current draw of the SenseModule’s major modes of operation is given

in Table 14. The values in the “Current” column are calculated based on the component values

and data sheet properties. The totals at the bottom of the table are measured RMS values.

Over the course of a year, the SenseModule’s quiescent SleepMode current of 2.5 A drains

about 22 mAh from the 225 mAh CR2032 battery, leaving 203 mAh for normal operation.

Average accumulated run time for each Ball Record appears to be about 30 seconds, including

false activations during the trip back from the pinsetter to the ball return. Thus, a single true

activation results in a total draw of 40 mAs for the battery, yielding 20,000 such activations per

battery in a year. If we assume an average of 18 activations per game, a single CR2032 battery

will yield 1100 games per year. If we further assume that only half of the battery capacity is

68

usable in this application, the SenseModule is still capable of recording 550 games on a single

CR2032 battery. Using a 90 mAh CR2016 battery will reduce the overall height and weight of

the module significantly, but will only yield 35% of the above estimate, or ~200 games.

Table 14: SenseModule Current Draw

SenseModule
Current

(ave)
SleepMode

CommandMode
(5-10 s)

ApproachMode
(10-30 s)

SampleMode
(<= 5 s)

Startup Circuit 1.3 A X

CP0 0.5 A X

smaRTClock (RTC) 0.6 A X

8051F921 (P) 600 A X X X

TSL13 50 A X X X

ADXL345 (sample) 180 A X X

ADXL345 (read) 100 A X X

EEPROM (write) 115 A X

EEPROM (read) 100 A X

TRX LED (IREF0) 250 A X

Average Current 2.5 A 1.10 mA 1.03 mA 1.15 mA

4.2 SenseModule Hardware
Pictures of the current version of the SenseModule prototype are shown in Figure 17. The prototype is

shown true size, with the top of the SenseModule on the left and the bottom on the right.

Figure 17: SenseModule Prototype

8051F921 P

24FC1025 EEPROM

ADXL345 Accelerometer

TSL13 Ambient Light Sensor

Optek 521 Phototransistor

69

4.2.1 Start-Up Circuit

The ambient light-based startup circuit has proven sufficient for this application. It ignores transient

light/dark pulses, and awakens the SenseModule from SleepMode only after a transition to an extended

period (~500 ms) of near total darkness. That condition generally occurs in response to the following:

1) Normal activation before the bowler’s approach

2) Normal activation for uploading data via the ComModule

3) Pinsetter elevating the ball from the pit to the subway ramp

4) Ball entering the subway at the pinsetter

5) Ball exiting the subway at the ball return

6) Ball rolling on the ball return

7) Ball being placed in a bag, locker, trunk, or closet

Conditions 3-7 are considered false activations. However, each of those occurrences yields only a single

activation, after which, the SenseModule returns to SleepMode and must again be exposed to light, and

then an extended period of darkness before the next activation can occur. There are additional steps

that could be implemented in software to detect those false activations, e.g. checking the ADXL345 for a

certain threshold of motion as part of the wake up validation checks.

4.2.2 Microprocessor (8051F921)

The 8051F921 P has proven to have all the functionality and versatility necessary to meet the evolving

requirements of this application. Besides the original reasoning for selecting this P for the

SenseModule, the following functionality has also proven to be quite useful:

1) The crossbar switch enabled versatile function assignment to port pins, which greatly simplified

the PCB layout.

2) The ability to use a configurable on-board comparator as a wakeup source eliminated the need

for an external D-FF that had originally been used in the startup circuit, and enabled the use of

the smaRTClock, since waking up from SleepMode does not require resetting the smaRTClock.

3) The port match interrupt provided a versatile interface to the interrupt pins of the ADXL345.

4) The smaRTClock (RTC) was not originally considered for the design, but has proven to be useful

in several ways: it provides an accurate time base for both sensors (which operate at different

sampling frequencies), it provides a time base that enables time/date stamping of the Ball

Records, and it can also be used to track run time, and thus battery usage.

5) The built-in CRC function is also convenient for calculating the CRCs for the EEPROM pages, as

well as for the reliable exchange of data between the SenseModule and the ComModule.

6) The built-in programmable current source (IREF0) drives the transmit LED, allowing for

configurable control of the LED current, eliminating the need for a current limiting resistor.

4.2.3 EEPROM (24FC1025)

The 128-byte page size of the EEPROM, along with the ability to buffer and write 128-bytes during a

single transaction has proven to be quite valuable in this application. The page buffering allows for

consolidating and optimizing I2C bus activity, while also minimizing the number of EEPROM write cycles,

which reduces the overall current drain on the battery during SampleMode.

70

4.2.4 Accelerometer (ADXL345)

This design leverages the autonomous sampling capabilities of the ADXL345. The ADXL345 has its own

configurable sample timer, contains an internal FIFO sample buffer, and supplies interrupts to the P

when that buffer is full. The SenseModule leverages those capabilities so that the ADXL345 can

accumulate samples on its own, while the P concentrates on sampling the ambient light waveform, and

on transferring light and ADXL pages via the I2C bus. With the ADXL345 configured for autonomous

operation, the P is able to spend more time in its internal low-power IdleMode, which reduces the

overall SenseModule current during both ApproachMode and SampleMode.

Analog Devices has recently released a lower cost accelerometer (ADXL343) that is pin-for-pin, and

functionally compatible with the ADXL345. The cheaper ADXL343 has a lower acceleration bandwidth of

320 Hz, but that lower bandwidth is actually a plus in this application, as it will serve as a “pre-filter” for

the higher frequency vibration and noise components that the ADXL345 can detect.

4.2.5 Ambient Light Sensor (TSL13)

The TSL13 light-to-voltage converter is admittedly overkill for this application. It was included to enable

the SenseModule to collect light waveform data similar to that collected by the original SMARTDOT

module, as well as to correlate the ambient light readings with the ADXL345’s acceleration readings.

Given that the TSL13 was already designed into this version of the SenseModule, it also doubles as the

infrared receiver for the SenseModule. However, its relatively slow step response limits the SM to

receiving data at 14.4 to 28.8 Kbaud. Although those rates are sufficient for receiving commands from

the ComModule, which are relatively short, the infrared UART will eventually be used to transfer

embedded software updates to the SenseModule, which will be 16 Kb to 32 Kb, and could take 10-20

seconds to transfer at those slower baud rates.

Now that the ambient light data has been collected in conjunction with the 3-axis acceleration data, the

TSL13 can be replaced with a less expensive and more power-efficient circuit. In fact, it is possible that a

single Optek 521 phototransistor could be used for the startup circuit, the ambient light sensor, and the

infrared receiver by having the P switch in/out appropriate biasing resistors, and configure its internal

comparators, as needed.

4.2.6 Infrared Transmitter (IREF0 and LED)

The programmable constant current source (IREF0), combined with a high efficiency LED, provides

consistent drive current and intensity at sub-milliamp current levels, and the switching speed is fast

enough for UART operation up to 115/230 Kbaud.

71

4.3 Raw Data Waveforms
The SenseModule collects four channels of sensor data: ambient light from the TSL13 light-to-voltage

converter, and the three acceleration axes from the ADXL345 accelerometer. A graph of the four

channels of raw data contained in a typical Ball Record is shown in Figure 18. The time axis across the

bottom starts when the SenseModule entered ApproachMode and runs until the SM detected an

automatic shutdown condition, which terminated SampleMode. The dead space on the graph before

8.25 seconds is the time the SM spent in ApproachMode waiting for release, storing sample pages in the

circular buffers that were eventually overwritten by more recent data. The vertical axis is in G’s, where

1 G = 9.8 m/s2 (acceleration due to gravity). The ADXL345 has a range of ± 16 G’s, and the TSL13 has an

output range of 0-255 counts, which has been scaled to 0-16 G’s on the graph.

 Result: Indicates the scoring result of the ball. In this case, the ball entered high in the pocket,

and the ‘4’ and ‘7’ pins were left standing after the first ball.

 Time: Time of day and date that the SenseModule was activated (‘0’ on the time scale), taken

from the P’s smaRTClock.

 Ts: Total sampling time, in seconds, for this activation of the SenseModule.

 ADXL Fs: Effective sampling frequency of the ADXL345 for this Ball Record, as measured against

the P’s smaRTClock (RTC). The ADXL345’s internal sample clock is configured for 200 Hz.

 Light Fs: Effective sampling frequency of the TSL13 for this Ball Record, as measured against the

P’s smaRTClock (RTC). The P generates a 240 Hz clock for (over)sampling the TSL13 output.

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 18: Typical Raw Data Waveform

72

4.3.1 Typical Waveform Regions

Figure 19 is zoomed in on the typical waveform of Figure 18. The graph is split into the portions of the

waveform that were captured in ApproachMode and SampleMode, respectively. The various regions of

interest are demarcated in red. In chronological order, those regions are:

1) Stance: The bowler and ball are relatively motionless, as the bowler prepares to start their

approach. The bowler’s fingers block the ambient light from reaching the TSL13.

2) Approach: The bowler starts their approach by leaning, taking a step, and/or pushing the ball

forward. The motion of the ball from the bowler’s arm swing is apparent. The bowler’s fingers

still block the ambient light from reaching the TSL13.

3) Release: The bowler starts applying lift to the ball shortly before release, inducing rapid

acceleration in the Y and Z axes. The light level increases as the bowler’s fingers leave the ball.

4) Loft: The bowler has released the ball, and it is initially in free fall, thus the flat acceleration

lines. The ball bounces twice as it hits the lane, as shown by the sudden spikes in all three axes.

5) Reaction: The ball rolls down the lane, and the tilt sensing aspect of the ADXL345 is evident in

the roughly sinusoidal waveform as the SenseModule rotates through the gravitational field.

The light waveform also indicates rotation, from release all the way through the Impact Region.

6) Impact: The ball hits the pins, as indicated by the increased “noise” and the spikes in the 3 axes.

The light level peaks as the ball passes under the fluorescent light illuminating the pins.

7) Shutdown: The ball falls off the back of the pin deck, into the pit. The ADXL axis waveforms

once again flatten out, due to free fall, and the ambient light level drops to near 0.

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8 9 10 11 12 13 14 15

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

ApproachMode

Approach Region Stance Region

SampleMode
Release Region Loft Region

Reaction Region

Impact Region Shutdown Region

Loft Impacts Pin Impacts

Figure 19: Raw Data Waveform Regions

73

4.3.2 False Activation Waveforms

The SenseModule also wakes up from “false” activations generated during the ball’s trip from the

pinsetter back to the ball return. Figure 20 displays a graph of the resulting data. The SenseModule had

just recorded a legitimate Ball Record, and returned to SleepMode. While the ball was in the pinsetter,

the SM experienced a prolonged dark period, sufficient to wake up the SM again. During

WakeUpMode, the SM detected a sufficient level of darkness to enter ApproachMode, and advanced to

SampleMode when the ball emerged into the light at A. SampleMode timed out at the end of E.

A) The pinsetter picked up the ball, and placed it on the subway acceleration ramp. As the ball

emerges from the pinsetter, the light level increases and the SenseModule detects release.

B) The ball encounters the subway booster wheel, which accelerates the ball and sends it into the

subway. There is another spike in the light level from the rotation of the ball, as well as spikes in

the ADXL axes from the sudden acceleration applied by the ball wheel. There is also a sustained

increase in the ball’s angular velocity, indicated by the amount the Z-axis is offset from 0 G’s.

C) The ball rolls along the subway, as noted by the tilt response signatures of all three axes, the

absence of ambient light, and the continued offset of the Z-axis from 0 G’s.

D) The ball reaches the ball return booster wheel, which elevates the ball from the subway to the

ball return. The acceleration spikes when the ball encounters the ball wheel. Ambient light is

still absent, as the ball has not yet emerged from the subway.

E) The ball transitions from a rapid rotation to a much slower rotation as it is elevated to the ball

return. The ball still has not emerged from the subway, as indicated by the absence of light.

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9

G
's

seconds

Ball Record: 00011
6-9-10

 Subway and Ball Return Waveform

X-axis

Y-axis

Z-axis

Light

D: Ball return booster wheel B: Subway booster wheel

A: Ball emerges
from pinsetter

E: Ball elevated to
ball return

C: Ball in subway

Figure 20: Subway (False) Activation

74

The waveform shown above in Figure 20 is the result of the SenseModule waking up while in the

pinsetter, and detecting release soon after entering ApproachMode, as the ball emerged into the light

before entering the subway. Figure 21 depicts a second form of false activation. In this scenario, the SM

was in SleepMode when it emerged from the pinsetter. The ball entered the subway, woke up after 500

ms of darkness, entered ApproachMode, and waited for release. The ApproachMode time out period

(30 seconds) is sufficient for the ball to traverse the subway and emerge from the ball return, where the

SM detected release, and transitioned to SampleMode.

A) The ball is in the subway. The first 3.4 seconds of sensor readings were overwritten in the SM’s

circular page buffers while it was waiting for release during ApproachMode.

B) The ball is still in the subway. In ApproachMode, the SenseModule captures up to 3 seconds of the

sensor readings that immediately precede release in its circular page buffers.

C) The ball reaches the ball return booster wheel, as indicated by the sudden spikes in acceleration

and the cessation of rotation.

D) The ball is elevated to the ball return, as indicated by the slow rotation. The SM is still in the dark,

with the ball having not yet emerged from the ball return.

E) The light level increases as the ball emerges from the ball return at 5.6 seconds. The SenseModule

detects release at 5.7 seconds, as the finger hole with the SM rotates toward the ceiling.

F) The ball is slowly rolling around the ball return, while also wobbling from side to side, as indicated

by the high frequency, low amplitude spikes in the acceleration waveforms. The SM shuts down

automatically due to the extended period of relative inactivity on all sensor channels.

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

3 4 5 6 7

G
's

seconds

Ball Record: 00004
Result: False Activation (ball return)

Time: 17:45:28 8-29-2010
Ts: 7.079 s, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis
 Y-axis
 Z-axis
 Light

A: Ball in subway,
samples overwritten

D: Ball elevated to
ball return

C: Ball return booster wheel E: Ball emerges from ball return

F: Ball rolling on ball return

B: Ball in subway

Figure 21: Ball Return (False) Activation

75

4.4 Automatic Functions
In order for the SenseModule to operate without any user intervention, it must be able to automatically

identify and discriminate between the various regions described in Section 4.3. It must also be able to

discriminate between the legitimate activation shown in Figure 19, and the false activations shown in

Section 4.3.1. The critical task is to identify and recognize regular patterns across the raw data channels,

and then implement efficient algorithms so that the SenseModule can automatically discern the

presence (or absence) of those patterns. Looking at the raw data waveforms shown in Figure 19, that

task might seem relatively straight-forward, as there are clear demarcations in the waveforms between

those regions. However, the situations depicted in Figure 20 and Figure 21 occur regularly, and result in

waveforms with very similar characteristics. How to discriminate between those types of waveforms,

and reliably detect valid activations while ignoring false activations, is not so obvious.

The task becomes even more complex when constrained to working with an 8-bit processor, running at

3.05 MHz, with internal memory access limited to 4.25 Kb of RAM. In addition, the SenseModule’s

collection of automated detection algorithms must operate in real-time, in order to limit the P’s run

time to collecting and storing legitimate waveforms. Several automatic functions were initially

developed and further refined through multiple iterations of data collection, analysis, and tweaking of

the embedded software. Much of the initial valid waveform and release detection

development/testing/refinement was conducted in the author’s basement, before a ball was ever rolled

down a real bowling lane. Several real-world testing sessions then followed at a local bowing

establishment, interspersed with more “basement bowling” sessions. The automatic detection

algorithms have been further refined since the testing for this paper was conducted. The updated

algorithms are proprietary at this time, thus they are not presented in this paper.

4.4.1 Valid Activation Detection

A normal waveform is the result of the bowler retrieving the ball from the ball return, placing their

fingers in the ball (inducing SenseModule start-up), and then delivering the ball to the lane, with a

characteristic sudden increase in acceleration, immediately followed by an increasing light level.

A typical ApproachMode waveform is shown in Figure 22. The components of a valid activation are:

A) ApproachMode: Extends from time 0, when the bowler first put their fingers in the ball,

blocking light to the SenseModule, and continues to a point within the Release Window (E).

B) Stance: Bowler and ball are relatively motionless, as the bowler prepares for their approach.

C) Approach Motion: Encompasses all motion from the start of the bowler’s approach to release of

the ball. The bowler leans forward, takes a step, and/or pushes the ball away from their body to

start their approach. During the bowler’s arm swing, the ball arcs forward, then back, and then

forward again, followed by the bowler applying lift to the ball (D) just before release (E).

D) Lift Motion: Indicated by extended acceleration, primarily in the Y and Z axes. The Y-axis points

in the general direction of the lane and the Z-axis points toward the center of the ball.

E) Release Window: Release occurs at the end of lift, marked by the flattening of the acceleration

curves (ball is in free fall during loft), and a marked increase in the ambient light level.

76

In order to extend battery life, and maximize the number of valid waveforms that can be stored in

EEPROM, the SenseModule must be able to quickly discriminate between valid activations generated by

the bowler delivering the ball, and the regular “false” activations that result from the pinsetting machine

sending the ball into the subway and back to the ball return.

Since the SenseModule can spend up to 30 seconds in ApproachMode waiting for release, it also

performs valid activation detection during that time. While the SenseModule waits for the bowler to

deliver the ball, it constantly evaluates the incoming sensor readings for light and motion consistent

with the bowler delivering the ball to the lane. As the SM records that sensor data in its circular page

buffers, it also looks for evidence of false activation. When the discrimination algorithm identifies

sensor readings consistent with a false activation, the SenseModule immediately exits ApproachMode,

and returns directly to SleepMode, without transferring any sensor data to the EEPROM, just as it does

when ApproachMode times out.

During development and testing, the SenseModule recorded numerous false activation scenarios, two of

which are presented in Section 4.3.1. When the ball falls off the end of the lane, and into the pit, it

generally enters a period of prolonged darkness. Once the ball is in the pit, the pinsetting machine

elevates the ball to the subway ramp by means of a spinning wheel or rotating belt that accelerates the

ball, while also inducing the ball to rotate. During the ball’s transfer from pit to subway, it is possible for

the SM to sense an ambient light start-up condition, followed by increasing acceleration levels while still

dark, followed by an increasing light level, with the ball then rolling along the subway rails.

-10

-8

-6

-4

-2

0

2

4

6

8 9 10 11 12

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

E: Release Window

A: ApproachMode

C: Approach and Delivery

D: Lift Motion

B: Stance

Figure 22: Expanded ApproachMode Waveform

77

If the SenseModule hasn’t woken up before entering the subway, it can still wake up as a result of that

event, since the SM once again is exposed to a prolonged period of darkness in the subway before

emerging back into the light on the ball return, where conditions of increasing acceleration followed by

an increasing light level can again occur.

Thus, normal activation cannot be uniquely described by a simple scenario of prolonged darkness, with

an eventual sudden increase in acceleration on multiple axes, followed by an increasing light level.

Further complicating the matter of reliably detecting false activations is that the SM must err on the side

of caution, e.g. it must detect every valid wake up, at the expense of allowing some false activations to

continue into release detection.

The current version of the false activation detection algorithm considers the following conditions:

1) The magnitude, frequency, and rate of change of the ambient light level

2) The magnitude, frequency, and rate of change of the acceleration axes

3) The relative phase of the changes in light level and acceleration across all three axes

4) Various timing constraints between certain light and acceleration events

The results of the false activation detection routine tested for this paper have been mixed. Table 15

summarizes the results from testing of the SenseModule routine. Across 20 games (200+ frames) of

testing, the SenseModule captured the vast majority (over 97%) of true activations, but it rejected only

68% of the false activations. Even at 97%, the miss rate on valid activations is still too high; perhaps 1

miss in 1000 valid activations is acceptable. It is also apparent that there is a high rate of false activation

(over 80%) induced by the pinsetter/subway/ball return. Fortunately, there is another line of “defense”

in rejecting false activations, which is implemented at the release detection level.

Table 15: False Activation Detection

SenseModule
(219 frames)

Valid Activations False Activations

Captured 214 56

Rejected 5 123

Total Events 219 178

Detection Efficiency (%) 97.7% 68.5%

4.4.2 Valid Release Detection

The SenseModule remains in ApproachMode for up to 30 seconds, waiting for the bowler to release the

ball. When the SM detects release, it transitions from ApproachMode to SampleMode, and begins

committing the circular page buffer contents collected during ApproachMode to EEPROM, as part of a

new Ball Record. The SM needs to detect release in a timely fashion so that it can begin transferring the

ApproachMode page buffer contents to EEPROM before that data is overwritten by the new sensor data

collected during SampleMode.

78

A typical release scenario is shown in Figure 23. The components of a valid release are:

A) ApproachMode: Starts at time 0 and ends with transition to SampleMode after release

detection. The SenseModule stores sensor data in the circular page buffers during this mode.

B) SampleMode: The transition from ApproachMode occurs upon the SenseModule detecting

release. The SM commits circular buffer pages to EEPROM during this mode.

C) Approach Region: Begins with bowler’s approach. Ends with delivery of the ball at release (H).

D) Loft Region: Starts immediately after release (H). Contains multiple impacts with the lane (J).

E) Rotation Region: The ball is in constant contact with the lane, rolling toward the pins.

F) Lift Motion: The bowler imparts lift to the ball, as indicated by increased acceleration in the Y

and Z axes waveforms, which continues until release, when the waveforms flatten out.

G) Release Window: The SenseModule must detect release within this window, which is bounded

by an increasing light level and sudden changes in acceleration on all three axes.

H) Release Point: The true release point, where the ball enters free fall (I), as indicated by the

sustained increased light level and the flattening of the acceleration waveforms.

I) Free Fall: The flat acceleration waveforms indicate the ball was released above the level of the

lane. It is in free fall until it impacts the lane at (J). Not all bowlers loft the ball this much.

J) Loft Impacts: The ball bounces off the lane after the first impact, but remains in contact with the

lane after the second impact, which starts the rotation region at (E).

Figure 23: Expanded Release Region

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

11.4 11.6 11.8 12 12.2 12.4

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light
F: Lift Motion

D: Loft

B: SampleMode

E: Rotation

I: Free Fall

J: Loft Impacts

A: ApproachMode

C: Approach and Delivery

G: Release Window

H: Release Point

79

The release detection scheme might seem obvious from Figure 23: identify the increasing Y and Z axes

acceleration during the absence of light, and then look for an increasing light level, followed by the

flattening of the acceleration curves. However, this graph is taken from one frame from one bowler.

Not all bowlers apply as much lift to the ball, nor do they apply lift with the same timing, nor do they loft

the ball as much. In fact, many avid bowlers deliver the ball very smoothly to the lane, with little or no

loft, and with much less lift. Complicating matters, an individual bowler may alter their release and loft

in order to adjust to varying lane conditions. Thus, the seemingly obvious release indicators in the

above graph will not be so obvious (and in some cases likely to be absent) for many bowlers.

Recalling the two false activation scenarios presented in Section 4.3.1, it is possible that if either of

those scenarios is not rejected as a false activation during ApproachMode, they may each eventually

lead to false release events. Both scenarios are followed by the ball emerging from darkness into light,

while the ball is also experiencing sudden changes in acceleration. It is the eventual detection of a

release event that leads to the SenseModule recording a false activation as a Ball Record in EEPROM,

likely overwriting a legitimate Ball Record with one from a false activation. Thus, there is also a need for

a false release detection algorithm.

The false activation and release detection routines run simultaneously during ApproachMode. If a false

activation is detected first, release detection is aborted (along with ApproachMode), and the

SenseModule returns to SleepMode. If release is detected first, the false activation routine is aborted,

and the SM transitions to SampleMode.

In order to reliably detect true release conditions, while rejecting releases that occur as part of a missed

false activation, the SenseModule first identifies a likely release event, switches to SampleMode, and

begins recording data to the new Ball Record in EEPROM. The false release detection routine then

constantly evaluates the sensor readings following the initial release to determine whether or not to

continue SampleMode. False release detection can take several hundred milliseconds to decide on a

result. If the SM does detect a false release, it aborts SampleMode without advancing the

nextBallRecord and nextBallPage pointers. Thus, upon the next valid activation and release, the SM will

overwrite the partial data it previously recorded from the false activation and release with a valid new

Ball Record.

As with false activation detection, false release detection must be conservative, e.g., it must favor valid

releases, at the expense of missing some false release events. The current version of the false release

detection algorithm considers similar factors as false activation detection, but applies different emphasis

and priority to those factors. In essence, false release detection is an extension of false activation

detection, just as SampleMode is an extension of ApproachMode.

The results of the implementation of the false release detection routine tested for this paper have also

been mixed. Table 16 summarizes the results of the false release detection algorithm. The

SenseModule keeps track of the number of times it rejects (ignores) false activations and false releases.

Although the SM doesn’t know how many false activations/releases it fails to catch, any false activation

that makes it through both detection routines results in the waveform eventually being stored as a Ball

80

Record in EEPROM. Such records are easy to recognize visually after the data has been uploaded to the

ComModule. Thus, it is possible to discern between false activations caused by the pinsetter and those

caused by the subway/ball return that made it through both detection routines.

Table 16: False Release Detection Results

SenseModule
(219 frames)

Valid Releases
Pinsetter “False”

Releases
Subway/Ball Return

“False” Releases

Captured 214 2 13

Rejected 5 41

Total Events 219 56

Detection Efficiency (%) 97.7% 73.2%

Of the 56 total false activations that got through to false release detection, 41 were rejected by the

routine, yielding a combined detection efficiency of 93%. That level must certainly be improved upon,

but it is encouraging given the limited level of scrutiny and analysis that was applied to the sensor data

in developing the detection algorithms used for testing purposes for this paper.

4.4.3 Shutdown Detection

If it were not for the dual concerns for minimizing SenseModule run time, while maximizing the Ball

Record capacity of the EEPROM, the SenseModule could simply record a fixed amount of data for each

Ball Record. However, given those two goals, the SenseModule should stop recording sensor data as

soon as it has passed through the pins. Thus, an automated early shutdown algorithm has also been

implemented. Figure 24 shows a graph of a typical impact region.

A) SampleMode: The SenseModule commits sensor data to a new Ball Record in EEPROM.

B) SleepMode: The SenseModule returns to SleepMode after shutdown is detected.

C) Rotation Region: The ball rotates as it rolls towards the pins.

D) Impact Region: The ball hits the pins as it travels through the pin deck.

E) Shutdown Region: The ball falls off the back of the pin deck, and shutdown is detected here.

F) Pin Deck Light: The ambient light level spikes as the ball passes under the pin deck light.

G) Pin Impacts: The ball hits the pins, the Z-axis acceleration drops off, and all acceleration

waveforms begin to exhibit increased noise levels.

H) Free Fall: The ball bounced in the air while hitting the pins, indicated by flat acceleration lines.

I) Free Fall: The ball is falling off the back of the pin deck. The ambient light level drops to near 0.

The automatic shutdown detection routine implemented in this version of the SenseModule is fairly

straight forward. It relies on a combination of three basic characteristics of the raw data:

1) The three acceleration waveforms simultaneously flatten out as the ball goes into free fall off

the back of the pin deck.

2) The ambient light level generally flattens out near 0 while the ball is in free fall.

3) Some combination of the above two elements persist for a minimum duration, which must be

longer than the free fall period exhibited in (H) above. For the final version of the algorithm

tested for this paper, the minimum persistence was set to 50 ms.

81

There is also a shutdown time out period that starts at the beginning of SampleMode (upon release

detection) that serves as a “fail-safe” in case early shutdown is not detected. SampleMode runs for a

maximum of five seconds, and then automatically shuts down. The results for the shutdown detection

algorithm developed for this paper have been quite promising. For all activations (valid and false) the

routine detected early shutdown before the shutdown time out period expired every time (219 times

out of 219 activations). Note that the SenseModule continues to collect samples until the current ADXL

Sample Page is full, before it shuts down.

4.5 SenseModule Future Work
The initial development work has been accomplished, the basic waveform characteristics have been

identified, and autonomous operation has been achieved. The next phase of development will be

focused on refining the SenseModule hardware and embedded software to achieve more efficient and

robust operation, as well as to reduce the cost, size, and weight of the module.

4.5.1 SenseModule Hardware

The SenseModule hardware design used for this paper is now four years old. Based on the knowledge

gained through the collection and analysis of the raw data waveforms, the following refinements can be

made to the SM hardware design.

1) The TSL13 light-to-voltage converter is no longer needed for this project. At a minimum, it can

be replaced with a second Optek 521 phototransistor to serve as both the ambient light sensor,

and as the serial receiver for the infrared UART. It might even be possible to multiplex those

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

14.2 14.4 14.6 14.8 15

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

A: SampleMode
C: Rotation Region

B: SleepMode

F: Pin Deck Light

Free Fall G: Pin Impacts

E: Shutdown
Region

D: Impact Region

I: H:

Figure 24: Impact and Shutdown Regions

82

functions with the existing Optek 521 by switching bias resistors, and changing comparator

thresholds, as needed. Using the Optek 521 as the infrared receiver for the serial UART would

also allow the use of a much faster baud rate (115/230 Kbaud) for the infrared UART’s serial

receiver. Consolidating the optical receivers into a single phototransistor is the cheapest

solution for ambient light detection and serial reception.

2) Silicon Labs (the same company that makes the SenseModule P) recently introduced the Si1141

ambient light and proximity sensor, which presents a highly promising and intriguing solution for

replacing the SM start-up circuit and the TSL13 LTV. From the Silicon Labs website [29]:

“The Si1141 is a low-power, reflectance-based, infrared proximity and ambient light
sensor with I2C digital interface and programmable-event interrupt output. This
touchless sensor IC includes an analog-to-digital converter, integrated high sensitivity
visible and infrared photodiodes, digital signal processor, and an integrated infrared LED
driver with fifteen selectable drive levels. The Si1141 offers excellent performance
under a wide dynamic range and a variety of light sources including direct sunlight. The
Si1141 can also work under dark glass covers. The photodiode response and associated
digital conversion circuitry provide excellent immunity to artificial light flicker noise and
natural light flutter noise. The Si1141 device is provided in a 10-lead 2x2 mm QFN
package and is capable of operation from 1.71 to 3.6 V over the –40 to +85 °C
temperature range.”

The Si1141 in proximity sensing mode would not only replace the entire start-up circuit, it could
also directly detect valid activations and release events, since it would only respond to the
proximity of the bowler’s finger inserted in the finger hole that contains the SenseModule. Such
functionality would greatly reduce the time the SM spends out of SleepMode, since the
pinsetter, subway, and ball return could no longer generate false activations.

The Si1141 would also serve as the ambient light sensor. Since the Si1141 can run
autonomously, it would offload the burden of the entire ambient light sampling process from

the P, allowing the P to spend more time in IdleMode.

The SenseModule would still require a phototransistor as the infrared receiver for its serial

UART, since the Si1141 has neither an analog output, nor a step response fast enough for it to

serve that purpose.

The added expense of the Si1141 would be offset by the cost of the components it replaces,

combined with a significant reduction in the size, weight, and cost of the battery (CR2016

instead of a CR2032 3V lithium coin cell).

3) A plastic case must be developed for the SenseModule. The case will hold the SM and the

battery, and allow for user-replacement of the battery. The case will have two pieces:

a. A holder that is permanently affixed at the bottom of the finger hole and facilitates

accurate and repeatable positioning of the SenseModule.

b. A shell that encapsulates the SenseModule and the battery, and firmly secures the

SM/battery assembly into the holder.

4) It should be possible to add an additional 24FC1025 EEPROM chip, which would double the

capacity of the Ball Record database. The SenseModule currently has the capacity to store at

83

least 14 Ball Records (at the maximum 8.25 second sample time), but that is not enough to

capture an entire game, which can consist of up to 21 individual rolls of the ball. Doubling the

memory capacity of the SM would be enough to meet that goal. The Ball Record database, as it

is currently designed, can manage up to 62 Ball Records without modification.

4.5.2 Embedded Software

The development of the SenseModule embedded software has been a major undertaking. The major

thrust of this phase of the module’s development was to create a fully functional, autonomous

prototype. That goal has been achieved, but there is much more refinement of the embedded software

to be accomplished.

1) As mentioned in Section 4.4, the automated detection functions require further refinement,

e.g., they need to be more accurate, as well as more robust (accommodating of a variety of

bowling styles). The inclusion of the Si1141 proximity sensor mentioned under the hardware

section above would alleviate much of that effort, since it can directly detect the presence of

the bowler’s finger at activation, and its subsequent absence upon release of the ball. Absent

that hardware (or something like it), the SenseModule software must continue to infer

activation/release from the sensor data it currently collects. Increasing the reliability of those

functions would quickly develop into a major research effort, as data from a variety of bowlers

representing a cross-section of the major bowling styles would need to be collected and

analyzed.

2) As currently configured, the SenseModule spends up to 30 seconds in ApproachMode collecting

data while waiting for release, but then retains only the last three seconds worth of that data.

The ADXL345 can be configured for autonomous motion sensing, in which the ADXL345 issues

interrupt(s) to the P upon detecting acceleration readings outside of configurable threshold

ranges. After the P has woken up and configured the ADXL345 for motion detection, it could

return to SleepMode until the ADXL345 detects motion indicative of the bowler having started

their approach, and issues an interrupt to wake up the P to start ApproachMode.

3) The capacity of the Ball Record database could be further expanded through compression of the

sensor data contained in the light and ADXL pages. The light and ADXL waveforms are

frequently constrained to a small portion of the overall output range of their respective sensors.

Offset and/or differential based-storage techniques could be used to compress the readings.

4) The current draw of the SenseModule is managed by using the P’s built-in IdleMode, and by

enabling internal and external peripherals only when they are needed. Judicious switching of

the P’s system clock while the P is awake could further reduce the SM’s current draw.

5) The P’s flash program memory is writeable in-system. Currently, embedded software updates

for the SenseModule prototypes must be delivered via a direct electrical connection. The ability

to download software updates to the SM via its infrared serial UART must be added.

84

4.6 SenseModule Development Summary and Conclusions
The development of a small, low-cost, autonomous in situ sensor module that fits unobtrusively in an

existing finger hole and collects, records, and transmits ambient light and 3-axis accelerometer readings

has been achieved. The SenseModule fulfills all of the requirements and design criteria that were laid

out earlier in the paper. As such, the SenseModule could be the first such device of its kind that meets

those constraints. Although the development of the SenseModule has been a success, there is certainly

room for improvement in the several areas listed in Section 4.5.

The development of a working SenseModule, along with the collection of the desired sensor data,

represents the completion of the first part of this project. A visual inspection of the collected

waveforms reveals the following notable characteristics that could be further exploited within the SM

embedded software to enable more consistent autonomous operation.

1) The bowler’s approach and arm swing generate a relatively slow, smooth, noise-free waveform

which concludes with a sudden extended increase in acceleration due to the lift and turn the

bowler applies to the ball just before release.

2) The simultaneous flattening of the waveforms on all three axes immediately following release is

a direct indication that the ball is in free-fall during the loft phase. During loft, the ADXL

waveforms are confined to the centripetal acceleration generated by the rotation of the ball.

3) The tilt sensing aspect of the accelerometer is apparent for as long as the ball remains in

continuous contact with the lane, and is a direct indication that the ball is rolling.

4) The ball’s impact with the pins is readily apparent from multiple closely spaced spikes in the

waveforms, accompanied by a sudden increase in the noise content of those waveforms.

5) The extended free-fall period that follows impact with the pins is a reliable indicator that the

ball has reached the end of the lane and is falling into the pit.

6) The content of a valid waveform, as described by the characteristics above, differs greatly from

the content of the false activation examples presented in the paper. Although some of those

characteristics may appear in the morphology of a false activation waveform, their order,

duration, and amplitude appear to be unique to a valid waveform.

The primary caveat to all of the above is that the waveforms collected and analyzed so far originated

from a single bowler, and are characteristic of that bowler’s distinctive style. The waveforms that result

from other bowlers with different bowling styles may differ greatly from the ones presented in this

paper. Further data collection must be conducted across a wide variety of bowlers and bowling styles in

order to develop truly generalized and robust autonomous operation of the SenseModule.

Now that it is possible to collect the 3-axis accelerometer data from within the bowling ball, the next

phase of the project is to analyze the resulting waveforms in order to extract information useful to the

bowler. However, that which is “visually obvious” to a human does not necessarily translate into a task

that is easy and/or straight-forward to automate for a computer. The next section of this paper

summarizes the author’s work in identifying and developing automated algorithms that segment, filter,

and analyze the raw data waveforms, and then extract useful bowling metrics from those results.

85

Section V: Waveform Deconstruction, Filtering, and Analysis

As presented earlier, the REVMETRIX system consists of three components: the SenseModule

(autonomous data collection), the ComModule (data transfer), and the RevMetrixApp (data archival,

analysis, and presentation). The SenseModule’s autonomous capability arises from the inclusion of

algorithms for detecting activation, release, and shutdown that were developed iteratively through

collection and analysis of the SenseModule raw data waveforms.

Apart from those automatic detection routines, the SenseModule makes no other decisions, and draws

no other conclusions about the raw data. The SM does not need to know the ball’s RPMs (angular

velocity), nor how fast the ball is traveling down the lane (linear velocity) in order to perform its

function. Rather, it identifies characteristics within the raw data in real-time that are indicative of the

bowler delivering and releasing the ball, the ball rolling down the lane, impacting the pins, and then

falling into the pit.

It is the RevMetrixApp (running on a smart phone, tablet, or PC) that will eventually receive the

SenseModule data through the ComModule, and analyze and present the results to the bowler. This

section of the paper presents preliminary analysis of the SenseModule raw data, and proposes methods

for extracting useful bowling metrics from that data. Typical metrics of interest are release and impact

speed and RPMs, axis tilt, loft distance, and delivery and release characteristics. This work is a precursor

to the development of the RevMetrixApp.

Fast Fourier Transforms (FFTs), Finite Impulse Response (FIR) filters, and Wavelet decomposition and

reconstruction are used to identify the distinct temporal elements of the 3-axis accelerometer

waveforms that the SenseModule captures. After segmenting the waveforms, FIR and wavelet-based

filtering techniques tuned to the morphology and frequency content of each distinct segment are used

to analyze the segments and extract meaningful metrics for the entire waveform.

The raw sensor data is uploaded to a PC and stored in an Excel spreadsheet for off-line processing.

MATLAB M-files import the raw accelerometer data and then employ a combination of FFTs and first-

level Haar wavelet details from the 3-axis waveforms to identify four distinct phases (segments) in the

temporal evolution of the waveform. After the waveform is segmented, both FIR filters and

biorthogonal decomposition/reconstruction are used to extract the third-level approximation from the

reaction region. Further filtering of the reaction region reveals the sinusoidal “chirp” signal indicative of

the ball “revving up” as it approaches the pins. Extrapolation techniques are used to obtain meaningful

data at the fringes of the segment.

For the purposes of this project, a Dell XPS i7-2670QM 2.20 GHz laptop with 8 GB of RAM, running

Windows 7 (64-bit), served as the analysis platform. MATLAB student versions 2010a and 2012a, in

combination with the MATLAB Signal Processing and Wavelet Toolboxes, were used to create and

implement the analysis algorithms. Microsoft Excel 2010 was also used as a data analysis and

presentation tool.

86

5.1 Acceleration Components
The SenseModule measures acceleration in three orthogonal axes (X, Y, and Z) referenced to the

ADXL345 accelerometer. The SM is positioned in the finger hole such that the ADXL345’s X-axis aligns

parallel to the proximal axis of rotation (across the finger holes), the ADXL345’s Y-axis aligns with the

proximal direction of rotation (across the thumb hole), and the ADXL345’s Z-axis passes through the

proximal center of the ball. In Figure 25 below, the positive X-axis and Y-axis acceleration directions are

shown, with the positive Z-axis acceleration pointing out of the page.

Note that the 3-axis acceleration origin is established by the SenseModule’s position within the ball, and

does not have an external coordinate basis, such as the bowling lane. Although the ball travels in

essentially the same direction every time – down a lane that is 60 feet long by 41.5 inches wide – the

ADXL345’s X and Y axes likely will not align with either of the lane’s dimensions. In addition, the origin

rotates with the ball, thus from the lane’s point of view, the frame of reference is constantly changing.

Axis of
Rotation

Direction
of Rotation and

Ball Track

Direction of Ball
(toward pins)

+X

+Y

Figure 25: SenseModule Axis Orientation

87

The bowling ball can move through 6 degrees of freedom: linear motion in the X, Y, and Z directions,

combined with angular motion in the X-Y, X-Z, and Y-Z planes. The ball also moves within Earth’s

gravitational field. The ADXL345 detects the ball’s motion through those 6 degrees of freedom and

aggregates three types of acceleration into the output for each axis:

1) Linear: Straight line acceleration.

2) Angular: Centripetal acceleration due to rotation.

3) Gravitational: Orientation with respect to gravity (tilt sensing, range of ± 1 g).

With the SenseModule oriented in the bowling ball as shown in Figure 25, the angular acceleration

generated by the rotation of the ball registers as positive acceleration for the X-axis and negative

acceleration for both the Y and Z axes.

For gravity (tilt sensing), whenever the ball is rolling on the lane, the tilt sensing aspect of the ADXL345

imposes a sinusoidal component on top of the angular acceleration component. The magnitude of the

tilt component is limited to a range of ±1 g. The Z-axis reads +1 g when the finger hole containing the

SenseModule points towards the ceiling and -1 g when the finger hole points toward the lane. The Y-

axis reads +1 g when the finger hole is rotated 90° from the vertical in the direction of the thumb hole

(ADXL Y-Z plane) and -1 g when rotated 90° away from the thumbhole. The X-axis reads ±1 g when the

finger hole is rotated 90° from vertical in the plane of the finger holes (X-Y ADXL plane). See Figure 26.

Linear acceleration is much more involved. Throughout the bowler’s approach and delivery, the

ADXL345 registers a combination of linear acceleration from the bowler’s forward motion toward the

foul line, and the ball’s acceleration and tilt as it moves through the arc of the bowler’s arm swing. It is

not until the bowler begins to apply lift to the ball immediately before release that the ball starts to

undergo rapid angular acceleration.

Whenever the ball is rolling on the lane, it experiences linear deceleration in opposition to its direction

of travel due to the force of friction between the ball and the lane. The SenseModule rotates in the

presence of that frictional force, which induces a similar effect as the tilt sensing aspect due to the

X = 0 g (+ into page)
Y = 0 g
Z = +1 g

X = 0 g (+ into page)
Y = +1 g
Z = 0 g

X = +1 g
Y = 0 g
Z = 0 g (+ out of page)

+Y
+X

+Z

+Z

+Y

+Y

Figure 26: SenseModule Tilt Orientation

88

gravitational force, but orthogonal to the gravitational force. Thus, whenever the ball is in contact with

the lane, the frictional force induces a sinusoidal element on the acceleration readings, as does the

gravitational force. For any particular axis, those forces will be 90° out of phase, as the gravitational

force is directed vertically downward, and the frictional force is directed horizontally backward,

opposing the ball’s linear motion.

When the ball is in free fall, e.g., during the loft phase after it has been released, and when it falls off the

end of the lane into the pit, the ADXL345 only experiences the effects of angular acceleration. Those are

the only times that the angular acceleration is completely isolated from the other accelerations.

The task at hand becomes to separate out the various types of acceleration from the raw data

waveforms in order to recover the reaction of the ball, and then quantify that reaction for the bowler.

5.2 Raw Data Waveform Segments
The raw data waveforms captured for this paper exhibit a response that consistently evolves through

various acceleration regions over the waveform sample time. Each waveform can be logically separated

into the following segments by characterizing the amplitude and frequency content prevalent in the

respective signals from those regions.

1) Stance: The period during which the bowler is relatively stationary, just before starting their
approach. Steady-state (DC) acceleration due to gravity dominates at this time.

2) Approach: The time during which the bowler is delivering the ball to the lane. This segment is
comprised of DC and low frequency data and concludes when the bowler begins to apply lift and
turn to the ball immediately before releasing the ball.

3) Release: At the end of their approach, the bowler applies a sudden and forceful upward lift to
the finger holes, while also turning the rotational axis of the ball counterclockwise (toward the
left gutter) for right-handed bowlers.

4) Loft: This segment immediately follows the bowler’s release of the ball. The bowler generally
lofts the ball, which then travels several feet in the air before making its initial contact with the
lane. It may then bounce one or more times before remaining in continuous contact with the
lane. This segment is comprised of a flat DC-offset component due to angular acceleration, with
several strong high frequency spikes (one for each impact with the lane) superimposed on that
DC component. This segment concludes once the ball maintains contact with the lane.

5) Reaction: This segment comprises the time between the end of the LOFT segment and the ball’s
initial impact with the pins. The ball is rolling on the lane, and is interacting with the lane
through the force due to friction between the ball and the lane. This segment is also
characterized by a DC or low frequency offset component (angular acceleration), with a
sinusoidal chirp response and high frequency noise superimposed on the waveform (tilt
response combined with frictional opposition). The reaction segment ends when the ball
impacts the pins.

6) Pin Impact: This segment starts at initial impact with the pins (generally the head pin), and
continues until the ball starts to fall off the lane into the pit at the end of the lane. The pin
impact segment is comprised of several high amplitude spikes (pin impacts), a good deal of high

89

frequency noise, along with a continuation of the sinusoidal tilt response, and a low-frequency
offset bias due to the angular velocity of the ball.

7) Shutdown: The ball falls off the end of the lane and into the pit. The shutdown segment is
characterized by the sudden transition of all three axes to steady-state acceleration (free fall).
The SenseModule uses that DC signal to identify automatic shutdown.

5.3 Automated Segmentation
The segment boundaries of interest for analyzing the bowling ball dynamics after release are the

release-loft boundary, the loft-reaction boundary, and the reaction-pin impact boundary. Each of those

boundaries is demarcated by rapid changes in acceleration:

1) Release-Loft: A sudden increase in acceleration occurs as the bowler applies lift to the ball,

followed by a sudden decrease in acceleration when the bowler releases the ball.

2) Loft-Reaction: Immediately following release, the ball is in free fall until it contacts the lane,

generating one or more high amplitude impact spikes.

3) Reaction-Pin Impact: The ball impacts the pins, generating one or more high amplitude impact

spikes.

The ambient light waveform is used first to find a common local starting point for the Release segment.

The light signal increases fairly rapidly (from very close to 0) at the end of the release motion (see Figure

27). The portion of the light waveform following release is then used to recover the fundamental

frequency of rotation FR of the ball, which manifests itself from release through the first several

revolutions of the ball. Alternatively, FR can be determined by plugging the acceleration readings during

loft and the SenseModule’s displacement from the center of the ball into the angular momentum

equation. However, the technique implemented here does not require a prioiri knowledge of the depth

of the SenseModule within the fingerhole.

 Figure 27: Ambient Light Waveform

90

After the time of release is identified from the light waveform, the remaining light signal is interpolated

to 1 millisecond resolution (Fs = 1 kHz), and then a Hamming window is applied across that portion of

the waveform. The result is then padded to yield a frequency resolution of 0.5 RPMs (0.00833 Hz)

coming out of the FFT. FR is then set to the greatest amplitude FFT frequency bin having a frequency

greater than 60 RPMs (1.0 Hz). For example, from Figure 28, FR = Va, the peak angular velocity

component (and fundamental frequency) of the ambient light waveform frequency spectrum. FR is

subsequently used for both wavelet decomposition and FIR filtering of the waveform.

The location of the above three segment boundaries can be found by applying techniques from Wavelet

theory. Since Wavelet theory is based on repeated two-level decimation of the digital signal, the 3-axis

accelerometer readings are first interpolated to yield 25 = 32 samples per Hz, based on the fundamental

frequency FR found above from the light waveform spectrum. That step causes each wavelet decimation

level to occur at an integral harmonic of FR, which yields cleaner results for this application.

Single-level Haar wavelet decomposition is used to obtain the high frequency details (impacts) of the 3-

axis waveforms. The Haar wavelet was chosen because the acceleration readings contain both flat

regions (free fall), and high amplitude spikes (impacts) that the shape of the Haar can easily detect. The

details of the Haar wavelet decomposition are extracted, and Figure 29 shows the results of applying the

Haar wavelet to the 3-axis acceleration signal. The red trace (s) is the vector magnitude waveform from

the recombination of the three acceleration axes. The green trace (d1) shows the 1st-level Haar details

extracted from the vector magnitude waveform. A similar process can also be applied to the individual

acceleration axes.

Figure 28: Interpolated Light Spectrum

91

The vector magnitude details waveform is used to identify the significant high-frequency impacts in the

original signals. Those impacts are used as starting points for locating the segment boundaries. Various

statistical characteristics (mean, variance, standard deviation, 1st and 2nd derivatives) are then used to

accurately localize the exact segment boundaries. Figure 30 shows the combined impact results, along

with the 3-axis acceleration traces marked with the segmentation boundaries found from the

automated segmentation algorithm using the impacts from d1. The thresholds for identifying the

significant impacts are shown as dotted lines.

Figure 31 shows the four segments that resulted from those boundaries. The APPROACH segment

contains the stance, approach, and release regions that were described earlier. The IMPACT segment

contains both the pin impact and shutdown regions. For the remainder of the paper, we will focus on

the LOFT and REACTION segments. Our intent will be to isolate the linear deceleration, angular

acceleration, the loft impacts, and the tilt response from each other, and then analyze and extract the

useful bowling metrics from the resulting filtered component waveforms.

Figure 29: 1st-Level Haar Details (Impacts)

92

Figure 30: ADXL 3-Axis Segment Boundaries (Impacts)

93

Figure 31: Raw Data Segments

94

5.4 Automated Waveform Deconstruction
The REACTION segment from Figure 31 is expanded below in Figure 32. The 3-axis acceleration

waveforms of the REACTION segment are comprised of three distinct components:

1) Angular acceleration: Generated by the centripetal force due to the ball’s rapid rotation.

2) Sinusoidal tilt response: From the SenseModule rotating through the gravitational field.

3) High frequency noise: From irregularities in the contact surfaces between the ball and the lane,

SenseModule vibration in the finger hole, and digital noise infiltrating the ADXL345.

As the ball rolls down the lane, the force of friction between the ball and the lane converts the ball’s

translational kinetic energy to rotational kinetic energy, slowing the ball down, while increasing its

angular velocity. The increase in angular velocity is visually apparent in the angular acceleration portion

of the 3-axis signal of Figure 32, starting at 2.0 seconds, especially in the Z-axis signal.

As the angular velocity increases, the ball rotates more rapidly within the gravitational field, decreasing

the period of the tilt response, resulting in a sinusoidal chirp signal. That chirp signal will become more

apparent after isolating it from the composite signal, and filtering out the high frequency noise.

The amplitude of the angular acceleration and the frequency of the tilt response are directly related. As

we will see, the phase and amplitude of the 3-axis tilt signals are also related to each other, and can be

used to reveal the changing position of the ball’s rotational axis.

Before we can accurately analyze the components of the acceleration waveforms, the above three

components must be isolated from each other, while filtering out the noise component.

Figure 32: REACTION Segment

95

5.4.1 Waveform Deconstruction using Wavelet Decomposition

The high frequency noise portion of the acceleration waveforms has already been identified as the first-

level component of the wavelet decomposition. We will use further decomposition to isolate additional

components of those waveforms. The partial results of a five-level biorthogonal 6.8 wavelet

decomposition and reconstruction of the X-axis acceleration waveform are shown in Figure 33 below.

This is why we interpolated the original 3-axis waveforms into FR x 2n x T samples. Assuming that the

high-frequency noise is far enough removed from the signal of interest, there will be some level of

decimation (in this case levels d1 to d3) that filters out the noise and reveals the tilt response

superimposed on the angular acceleration response (a3). At some further level of decimation (in this

case levels d1 to d5), we see the isolated angular acceleration response (a5) emerge. The filtered angular

acceleration response (ss) is superimposed on the original signal (s) to illustrate how well the a5

approximation conforms to the original signal. Subtracting a5 from a3 isolates the tilt response from

being superimposed upon the angular acceleration, as seen in Figure 34 below. Wavelet

decomposition/reconstruction works very well to separate out signal discontinuities, whereas an FIR

filter is more appropriate for filtering noise out of cyclical waveforms. The acceleration signal, taken as a

whole, exhibits both types of components. We have used wavelet decomposition to segment the

waveform and isolate the components; we can now use an FIR filter on the cyclical portion of that

waveform, which we have isolated from the REACTION segment.

Figure 33: 3rd & 5th-Level Bior6.8 Reconstruction

96

5.4.2 Tilt Response

The results of the two different methods for isolating the tilt response are shown in Figure 34: wavelet

decomposition/reconstruction (wave) and a conventional FIR filter (FIR). The wave signals are the a5 –

a3 results from the previous section. The FIR signals are the result of filtering the REACTION segment

using a Hamming window and applying a symmetric FIR filter to preserve the relative phases of the 3-

axis waveforms. The fundamental frequency of rotation FR was used as a basis to establish low and high

cut-off frequencies for the pass-band FIR filter. In order to further attenuate the effects of discontinuity

at the ends of the REACTION segment, the original signal was “folded” over at either end, before the

Hamming window was applied, to extend the signal while preserving the frequency content.

The wavelet-derived waveforms are shown with dotted lines, while the FIR-derived waveforms are

shown with solid lines. Inspection of the wavelet and FIR results reveals a close correspondence

between those signals, especially in the frequency and zero crossing regions. However, there is a small

but discernible difference in the amplitudes, especially closer to either end of the REACTION segment,

with the FIR versions displaying more uniform continuity than their respective wavelet versions. As a

result, from this point forward, we will use the tilt responses that were obtained using the FIR filter.

Through a combination of wavelet decomposition/reconstruction and FIR filtering, we have now

obtained clean sinusoidal waveforms from the tilt sensing aspect of the ADXL345 accelerometer. We

will use the periods, amplitudes, and relative phases of those waveforms later to analyze the bowling

ball’s reaction as it rolled down the lane.

Figure 34: REACTION Segment Filtered Tilt Response

97

5.4.3 Angular Acceleration and Tilt Response

We have isolated the angular acceleration component and the tilt response components from each

other. Figure 35 shows those two components, along with the raw data waveform (dotted lines) over

laid on each other. The filtered tilt response closely follows the raw signal, and the angular acceleration

component appears to be the running average of the tilt sensing component. This makes sense, as the

sinusoidal tilt component was originally superimposed on the angular acceleration waveform.

We will use the isolated angular acceleration waveforms in combination with the tilt sensing waveforms

to reconstruct the instantaneous angular velocity of the ball, from release through impact with the pins.

Figure 35: REACTION Angular Acceleration and Tilt Response

98

5.4.4 Tilt Response Interpolation and Extrapolation

Having isolated the acceleration responses above, we can extrapolate the waveforms into the LOFT

segment. Recall that the LOFT segment waveforms are flat, since the ball was in free fall, and that the

only non-DC frequency content was due to the high amplitude impact spikes that were filtered out

earlier along with the “noise” component. Figure 36 shows the tilt response extrapolated from the

REACTION segment into the LOFT segment. Note that the graph now starts at 0 seconds (the release

point), and spans the LOFT, REACTION, and PIN IMPACT segments.

This graph is again shown with the filtered signals overlaid on the original raw data signals to show the

high correspondence of the filtering techniques that have been used to isolate the various acceleration

components from the original waveforms, as well as filter out the high-frequency noise.

Figure 36: Extrapolated LOFT-REACTION Tilt Response

99

5.5 Waveform Calculations
Now that we have isolated the various acceleration components, we can begin extracting the metrics

relevant to the bowler. Metrics of interest related to the bowling ball that we can derive from the

collected data are:

1) RPMs: Release, impact, and instantaneous angular velocity.

2) Revolutions: Revolution count from release through pin impact, revolution location.

3) Ball Speed: Release, impact, average, and instantaneous linear velocity.

4) Loft: Height and distance.

5) Axis Tilt: Release, impact, and instantaneous deviation of axis from parallel with lane surface.

Appendix D (page 124) includes an example of the typical output that the current MATLAB analysis

program produces for one data set.

We can use the components of the waveform deconstruction effort just described to discover how the

angular velocity changes over time. Having that knowledge, we can then use energy conservation

techniques to find out how the linear velocity of the ball changes as the angular velocity changes. After

we have determined the manner in which the linear velocity of the ball changes over time, it then

becomes possible to determine the initial (release) velocity, which is one of the major execution

variables that a bowler must learn to control. We can then locate the ball (along with each revolution)

on the lane relative to the foul line, rather than relative to the time of release. That allows us to

determine the ball loft distance (another major execution variable). Having found the conversion from

time (sample index) to distance, we can then deduce the coefficient of friction acting between the ball

and the lane, which can be used to infer the distribution of oil on the lane.

Since we know both the length of the lane and the time that it took for the ball to traverse the distance

from the foul line to the pins, it is easy to calculate the average speed (linear velocity) of the ball. The

average linear velocity provides us with a lower bound for the initial linear velocity the bowler applied to

the ball at release, since the release velocity must have been greater than the average velocity (given

that the linear velocity of the ball is always decreasing).

We utilized two different methods to find the angular velocity of the ball from the filtered waveforms.

However, recovering the instantaneous linear velocity from the ball's average linear velocity and the

angular velocity of each revolution presents an interesting, challenging, and non-trivial problem.

The following methods rely on the initial assumption that no energy is lost as friction works to transfer

energy from the ball’s linear kinetic energy to its angular kinetic energy. Those methods can be

generalized to allow for a constant (but arbitrary) percentage of the energy transferred from the linear

kinetic energy to be lost as heat/vibration due to friction.

The author’s original paper [1] covered much of this ground, but from a “per-revolution” standpoint,

rather than a “per-sample” standpoint, e.g., calculations for each revolution of the ball, rather than for

each sample time. This portion of the paper provides updated derivations for the techniques presented

in the original paper, along with the results of implementing those updated algorithms as part of this

project.

100

Throughout this paper, we have assumed that friction is the only force of any significance acting on the

ball. The results of that frictional force become apparent by observing the angular velocity of the ball

increase as the force of kinetic friction acts to resolve the discrepancy between the initial linear and

angular velocities of the ball.

Assume, for the moment, that the ball loses no energy throughout the course of a shot (the total kinetic

energy of the ball remains constant). We can then draw the conclusion that all of the energy the ball

gains from the increase in its angular velocity must have been transferred from the ball's linear velocity,

i.e., any increase in angular kinetic energy must be exactly offset by a decrease in linear kinetic energy.

Based on our assumption of constant energy, the energy of the ball at any instant (sample time) must

also be constant. Since the angular velocity for each revolution of the ball, and for each sample time,

has already been found, if the total kinetic energy of the ball for a specific period is known, the linear

velocity for that period can also be found. Once the linear velocity at any sample time is known, it is

then possible to find the ball loft distance, and the location of each revolution of the ball, relative to the

foul line.

Putting those assumptions and deductions into more formal terms, the ball possesses constant energy

throughout its trip to the pins, and its energy at any instant is equal to its energy at any other instant.

The total energy of the ball (E) is the sum of its potential (P) and kinetic (K) energies,

 Since the ball rolls on a flat, level lane surface, there is no potential energy (P = 0), thus

 Since it is assumed that the ball has constant energy from its release at the foul line to its impact with

the pins, then for KR (energy at release), KP (energy at pin impact), and Ki (energy at any sample point i),

The assumption of constant energy implies that energy losses due to axis torque, vibration, heat, air

resistance, and noise generation are negligible. Therefore the only components of the energy of the ball

are its angular kinetic energy (K) and its linear kinetic energy (Kv), thus

The linear kinetic energy of an object with mass m and linear velocity v is given by

The angular kinetic energy of an object with mass m, moment of inertia I, and angular velocity  is

The moment of inertia I of a sphere with mass m and radius r has the form

101

The value of k is determined from the mass distribution within the sphere. We can find k from the

United States Bowling Congress (USBC) specification for the Radius of Gyration (RoG) of a bowling ball.

The USBC imposes limits on RoG of 2.430” to 2.800” [10].

 (

)

The USBC also imposes limits on the radius r of a bowling ball such that

Combining the USBC limits for RoG and the radius of a bowling ball yields

(

)

 (

)

Thus, the range for the moment of inertia for a bowling ball of mass m is

 (

)

 (

)

The USBC requires bowling ball manufacturers to measure the RoG for each model of bowling ball they

sell, and that value is available to use in the calculations that follow.

Substituting the moment of inertia into the equation for angular kinetic energy, we get

Therefore, the total kinetic energy K of the ball is given by

Having established the energy equations and the range for moment of inertia, and value for k, we can

now move on to establishing the calculations for the bowling ball metrics using the waveform

components we previously extracted.

102

5.5.1 Average Ball Speed

The average ball speed (linear velocity) can easily be found from the length of lane (60 feet) and the

time elapsed from release of the ball to its initial impact with the pins. If we let D be the distance from

the foul line to the head pin, and Ts be the elapsed sample time from release to pin impact, then

The above equation assumes that the ball is released at the center of the foul line, travels in a straight

line, and makes contact with the center of the head pin at a distance of 60 feet from the foul line. In

reality, none of those assumptions is precisely true. A discussion on the errors introduced by the

assumptions made in the paper is presented in Section 5.6.

5.5.2 Revolution Period and Count

It is a straight-forward process to locate and count the peaks and valleys in the tilt waveforms. Figure 37

depicts the temporal locations of the half-revolutions in the REACTION segment tilt response. We

previously extrapolated the tilt response from the beginning of the REACTION segment into the LOFT

segment. We can extrapolate the partial revolutions immediately before pin impact from the periods

and rates of change of the half-revolutions at the end of the REACTION segment.

The half-periods (peak-to-valley and valley-to-peak) of the 3-axis waveforms are counted and then

averaged to come up with the revolution count. The difference in sample times between the peaks and

valleys are then used to determine the period of each half-revolution. We will use that information next

to determine the instantaneous angular velocity of the ball.

Figure 37: REACTION Revolution Location

103

5.5.3 Instantaneous Angular Velocity (RPMs)

Having isolated the tilt response, we can now determine the peak-to-valley and valley-to-peak times for

each half-revolution for each tilt waveform from Figure 34. The half-revolution angular velocities (in

RPMs) for the revolution containing peak p and valley v are given by

We can extract the angular velocity for the LOFT segment from the average angular velocity of the first

250ms to 500 ms of the results in the REACTION segment, since there is generally little friction in that

part of the lane to generate changes in angular velocity. Figure 38 below shows a plot of the results.

Notice the effects of the granularity of our measurements. We previously interpolated the waveforms

to have 32 samples per Hz of FR, which results in a resolution of ~10 RPMs. Thus a jitter of one sample

time in a full-revolution period translates to a step change of 10 RPMs, and a corresponding step change

of 5 RPMs in the half-period results. Such step responses will cancel each other out over multiple

periods, as indicated by the average waveform. We can apply a fifth-order polynomial curve-smoothing

routine to the average waveform to reconstruct a smooth instantaneous angular velocity curve from the

tilt response. We could also use a higher level of interpolation to increase the RPM resolution: 28 = 256

samples per Hz of FR would yield a resolution of ~1 RPM.

Figure 38: LOFT-REACTION Angular Velocity

104

Figure 38 above also displays the angular velocity curve that we obtained directly from the low

frequency portion of the magnitude acceleration waveform. That acceleration is largely due to the

centripetal acceleration generated by the rotation of the ball.

We can extract the angular velocity f from the centripetal acceleration Ac, as follows:

 √

The revolution rate f in RPMs is then

During the LOFT segment, it directly indicates the centripetal acceleration, since the ball is in free fall

during that time. Figure 38 reveals an approximately 5% discrepancy between the angular velocity we

extracted from the tilt response and that obtained from the angular velocity curve. Ideally those two

curves should more closely match, and the author has yet to adequately account for the discrepancy.

5.5.4 Instantaneous Linear Velocity (Ball Speed)

Keeping in mind that any increase in angular velocity produces a corresponding decrease in linear

velocity, we can now determine the deceleration of the ball from the change in instantaneous angular

velocity. That determination then allows us to develop an equation that produces the linear velocity vi

for each sample period i of the waveform.

Recall that distance is the integral of velocity with respect to time. In the case of a sampled system, that

relationship is given by the summation

 ∑ (

)

Recall the assumption that the kinetic energy K of the ball remains constant from release to pin impact,

If we let Ki be the kinetic energy of the ball during sample time i, then

(

)

Combining the above two equations yields

(

)

Solving for vi, we get

 √(
 (

))

105

For constant energy, the above equation assumes that friction acts solely to transfer energy from linear

kinetic energy to angular kinetic energy. We can now obtain an expression for each linear velocity vi in

terms of the initial linear velocity v0. Substituting into the summation yields

 ∑√

We can now develop a converging iterative solution for v0, and then generate the remaining vi values

from v0. To start the iteration, we need an initial “seed” value for v0. We know that D = 60 feet, and an

appropriate first guess is the average linear velocity vave, which we found earlier, thus

The final value for v0 must be greater than vave, since the ball slows down after release. Evaluating the

summation with vave results in a value D' < 60. We can then use D' to arrive at the next guess, as follows

The term (60 - D’)/T represents the error in the average linear velocity distributed across each sample

point. The adjustment to v0 adds/subtracts that discrepancy to create the next value for v0. Iteration

continues in this fashion (guess, calculate, adjust), until the difference 60 – D’ falls within an acceptable

error margin, at which point we have found the true initial linear velocity v0. We can then find the linear

velocities for each sample point i by plugging the values for v0, 0, and i into

 √
 (

)

Figure 39 shows a plot of the change in linear velocity with respect to time, from the above calculations.

Figure 39: Instantaneous Linear Velocity

106

5.5.5 Distance

We can now use the instantaneous linear velocity to find the distance the ball covered during each

sample period. We can then calculate the location (relative to the foul line) of every point between

release and pin impact, enabling us find the distance the ball was lofted, locate each revolution relative

to the foul line, and relate the linear and angular velocities of the ball with respect to distance.

The distance Dk that the ball has travelled at any time point k since release at the foul line is given by

 ∑

Now that we can cross-reference sample points with lane distance, we can easily find the loft distance,

as well as the location of each revolution on the lane. Those revolution locations (the angular velocity

relative to lane distance) reveal where the ball begins to experience significant angular acceleration (the

angular velocity begins to increase). That distance is called the break point of the ball, and the break

point moves as the lane oil distribution changes during the course of a bowling session.

5.5.6 Loft Height and Distance

Since we previously found the time stamps for the loft impacts, it is an easy matter to now get the

distance the ball flew in the air past the foul line before it first hit the lane. If tR is the time of release

and tL1 is the time of the first loft impact, we can also calculate the loft height from the “time of flight” of

the ball after release using the equation for projectile height,

There will be some uncertainty here, as we will not be able discern how high above the lane the ball was

released, without some additional analysis of the release waveform. But this should at least provide a

good first approximation.

5.5.7 Coefficient of Friction

A bowling ball generally skids the entire length of the lane, and thus it experiences sliding kinetic friction

between the ball and the lane the entire time. We can recover the coefficient of kinetic friction from

the previous calculations. Under the assumptions, the force due to kinetic friction is the only force

acting between the ball and the lane, and that force acts solely to transfer linear kinetic energy to

angular kinetic energy. Since the changes in angular and linear velocity for each sample are known, we

can find the frictional force required to generate those changes.

Since we’re assuming that the kinetic frictional force is the only input of any consequence to the system,

we can rewrite the standard equation for work as

Solving for the force due to friction, we get

107

We need the change in kinetic energy that the frictional force generated, over the distance the ball

travelled while that force was being applied. For any sample point i, the frictional force Fi acting during

i is given by

(

)

(

)

Note that we can use either the change in angular kinetic energy, or the change in linear kinetic energy

to find the kinetic frictional force. We can then obtain the coefficient of kinetic friction i between the

ball and the lane for any sample point i from

Combining the equations, we get

(

)

(

)

Figure 40 shows a graph of the coefficient of kinetic friction relative to distance from the foul line. The

graph reveals the limitations of our assumption that the ball experienced no loss of kinetic energy due to

the other forces in the system. Although the values for  are reasonable in the latter third of the graph,

It is unlikely that  is so close to zero for the first 35 feet of the lane - typical minimum values for  are

0.05 – 0.1 in that area. Given that the ball is rotating rapidly while skidding down the lane, there is

certainly a loss due to friction. Also, the sudden drop off in the last 4-5 feet is the result of the FIR filter

causing the angular velocity curve to roll off in the region close to the IMPACT segment. Those

limitations, along with how to address them, will be discussed in Section 5.6.

Figure 40: Coefficient of Friction

108

5.6 Assumptions and Error Analysis
Throughout the presentation of the raw data analysis, and the derivations of the bowling metric

calculations, we have relied on some very basic assumptions. This section presents those analysis

assumptions in greater detail, along with an assessment of their possible error contributions. The

author presented a similar analysis and summary in his first paper, and the following analysis borrows

from that previous discussion.

5.6.1 Distance

We have assumed that the ball travels 60 feet - the distance from the center of the foul line to the

center of the head pin. The bowler normally releases the ball close to the foul line, and the first pin the

ball encounters is the head pin (at least on the first ball of any frame). Let us take a closer look at what

those assumptions really mean.

 The ball is released at the foul line: Generally, the bowler releases the ball at, or just beyond,

the foul line. If the bowler releases the ball beyond the foul line, the distance the ball travels is

shorter than 60 feet, and the calculated velocity will be less than the actual velocity. Since the

bowler’s feet must stay completely behind the foul line in order to legally deliver the ball, the

distance they can reach beyond the foul line is limited to 12-18” at release of the ball.

Conversely, if the bowler releases the ball behind the foul line, the distance the ball travels is

greater than 60 feet, and the calculated velocity will be greater than the actual velocity.

Releasing the ball behind the foul line is usually the result of a noticeable lapse in execution on

the bowler's part (dropping the ball, releasing the ball early, or stopping short of the foul line).

The nominal margin of error at the point of release is estimated to be 6” to 18” beyond the foul

line, which introduces an error in the distance the ball travels of -12”.

 The ball hits the head pin at a fixed location: At the other end of the lane, the ball can hit the

headpin in different spots - head on, or on either side. A pin is 4.75" in diameter at the height at

which the ball contacts it, and the center of the pin is located 60' ±½" from the foul line. A

bowling ball is nominally 8.55" in diameter. Assuming the ball is released with its center over

the foul line and it hits the head pin dead center, it must have travelled 59' 5" to 59' 6" from the

point of release. If the ball barely grazes the right or left side of the head pin, then the ball

traveled 59' 9" to 59’ 10". A solid pocket hit (the goal of any potential strike delivery) falls

halfway between those two ranges, so the expected distance from the foul line that the initial

head pin impact occurs is 59' 8”. Therefore, the error introduced in hitting the head pin is -4"

 The ball takes the shortest path from the foul line to the head pin: In reality, the ball is rolled

with some amount of hook, and is released from some place other than the center of the lane,

and is initially directed somewhat toward the right gutter (for a right-handed bowler). If the ball

were thrown from the outside edge of the right gutter in a straight line 45-50 feet down the

lane, and then suddenly hooked straight toward the pocket, it would travel an extra 7/8". At the

other extreme, if the ball were released at the left gutter, and traced a regular arc to the right

gutter at 30 feet, and then back to the head pin, it would travel an extra 6". This is an extreme

amount of hook, but will be factored into the error budget as ±3".

109

 The ball and pins each have fixed diameters: The ABC maintains tight control over the allowed

dimensions of the ball and the pins. The ball has a nominal diameter of 8.545 ±0.045", resulting

in a nominal circumference of 26.855 ±0.141". The diameter of the ball contributes a negligible

error. At the height that the ball strikes a bowling pin, the pin must have a nominal diameter of

4.766 ±0.031". That value is also an insignificant contribution to the error calculations.

Combining the three significant errors (at the foul line, at the pins, and from the path of the ball), yields

a total of approximately -13” to -19” of error in the distance the ball travels. For a nominal distance of

60 feet, the total error works out to be -1.81% to -2.64%. For a ball thrown at 15 mph, this error will

manifest itself as an increase in the calculated average velocity from 15.27 mph to 15.40 mph.

In the final RevMetrix application, the bowler could input their normal release point as a configuration

parameter. Then, for each ball thrown, they would indicate the approximate board where the ball was

released, the extreme right (or left) board that the ball crossed on its path to the pins, and the board the

ball was on at the time of impact. The RevMetrix application would then utilize this information in its

velocity calculations. The margin of error in the distance the ball travelled would likely be reduced to

less than 6", increasing the accuracy of the calculation to within 0.1 mph (an error of about 0.7%).

5.6.2 Time

Another assumption is that the microprocessor's clock is accurate. The smaRTClock is used to time

stamp the raw data samples, and that clock is based on a 32.768 kHz watch crystal with an error over its

operational temperature range of no more than ±200 ppm (0.02%), or 600 s over a 3-second shot,

which is an insignificant error contribution.

5.6.3 SenseModule Position, Alignment, and Calibration

The position and alignment of the SenseModule within the finger hole can each have a significant impact

on the acceleration readings, and thus on the calculations that are derived from those readings.

Further, the ADXL345 introduces some additional alignment considerations of its own.

A fixed or known depth of the SenseModule within the finger hole is crucial to deriving accurate angular

velocity calculations from the magnitude angular acceleration readings. The centripetal acceleration

that the ADXL345 experiences is related to its radius of rotation, which is not the radius of the ball, but

rather, the offset of the ADXL345 from the center of the ball, and/or the actual axis of rotation. In the

final round of data collection conducted for this paper, the ADXL345 was located 1.475” below the

surface of the ball, putting it at a distance of 2.80” from the center of the ball, thus r = 2.80” for the

angular velocity calculations.

The pitch of the finger hole also comes into play, as the holes drilled in a bowling ball are not necessarily

directed toward the center of the ball, but are pitched in such a way as to aid the bowler in applying lift

to the ball (finger holes pitched toward the palm, and thumbhole pitched away from the palm). Also,

bowling balls are routinely drilled to introduce a predictable dynamic imbalance in the ball, intended to

manipulate the ball’s moment of inertia, and either resist or enhance the onset of hook in the ball. Such

drilling patterns shift the radius of gyration of the ball away from its center of mass.

110

The SenseModule does not yet have a case to secure it within the finger hole. For the data collected for

this project, the SM was secured to the bottom of the finger insert with tape. As such, the finger insert

transferred some of the forces it experienced during approach and release to the SM. It is also likely

that the higher frequency noise imposed on the REACTION segment waveform is due to vibration and

excess movement transferred to the SM from the movement of the module and the finger insert.

In order for the SenseModule to provide consistent and repeatable results, it must be positioned and

aligned within the finger hole in a consistent and repeatable manner. Thus, a case must be developed

that can be secured in the bottom of the finger hole which will then fix the depth and rotational

alignment of the SM for a particular bowling ball. With such a case, the SM could then be calibrated for

that ball, with a known alignment in the ball – as shown in Figure 25.

5.6.4 External Forces and Friction

The major assumption we’ve made is that the frictional force between the ball and the lane is the only

force of any significance that acts on the ball following release. Losses due to noise, vibration,

aerodynamic drag, and torque applied to the rotational plane of the ball are considered negligible. A

further assumption is that the force due to kinetic friction acts on the ball in such a way as to efficiently

transfer its linear kinetic energy to angular kinetic energy.

The ball is released with an initial linear velocity that exceeds the ball's angular velocity. That is, the ball

travels further during one revolution of the ball than one circumference of the ball. This difference

causes the ball to skid (slide). Also, generally speaking, the axis of rotation of the ball is neither parallel

to the surface, nor is it normal to the direction of the lane. The force due to friction causes the ball to

resolve those differences, slowing the ball down, while increasing its angular velocity, and causing the

ball to hook. That resolution continues to occur until such time as the ball is no longer skidding (has

rolled out), or the ball has completely traversed the lane and entered the pit.

 The ball is always slowing down after it is released: The force due to friction causes the ball to
translate linear kinetic energy to angular kinetic energy, until such time as the resolution
(rollout) point is reached. If the ball reaches rollout, both the angular and linear velocities
decrease. Therefore, the linear velocity is always continuously and monotonically decreasing.

 The angular velocity is always increasing: The angular velocity of the ball will continuously and
monotonically increase until the rollout point is reached, at which time the angular velocity also
starts to decrease in a continuous and monotonic fashion, along with the linear velocity. It is
possible to detect roll out by observing the angular velocity of the ball near the pins. The ball
has rolled out if the angular velocity has begun to decrease, in which case, the linear velocity of
the ball can be directly deduced, since it must travel 27" (one circumference of the ball) for
every revolution of the ball.

 Perfect transfer from linear kinetic energy to angular kinetic energy occurs: Actually this is not
the case, but the amount of transfer can be detected in the change in angular velocity between
each revolution of the ball. Since the kinetic frictional force is the only force acting on the ball, it
will be directly related to the amount of change in the angular velocity. The actual unaccounted
for losses due to friction result from heating of the ball and/or the lane, noise generation,
vibration, inelastic deformation of the ball and lane, and torque applied to rotating the axis of
the ball normal to the direction of travel.

111

If the ball rolls out, it is possible to directly observe the effects of rolling friction, since the linear velocity

is directly related to the angular velocity, and the drop in kinetic energy of the ball can then be

measured. While the ball is skidding, the actual losses due to friction are very probably some constant

fraction (percentage) of the change in angular momentum, i.e., 90% of the change in linear momentum

is transferred to angular momentum, 10% is given up as heat, noise, etc. The exact percentage is not yet

known, and it probably varies for each type of ball, but with additional research, it should be possible to

place an upper and lower bound on the frictional losses.

5.7 Waveform Analysis Future Work
Although the SenseModule is now fully functional, in that it currently operates in a fully autonomous

mode, there is still much work to do. The future work for the SM has already been proposed earlier in

the paper, but there is also much additional work that must be done on the data analysis, algorithm

development, and validation and verification fronts.

5.7.1 Bowling Metric Accuracy

Although extensive work has been done to develop the bowling metric extraction algorithms, little has

been done to verify the accuracy of their output. The author has used standard video analysis to verify

that the average linear velocity, the revolution count, and the angular velocity calculations are

approximately correct, within the limitations of that method of analysis. However, video analysis, at 30

fps, does not provide the requisite temporal resolution necessary to evaluate the instantaneous linear

and angular velocity calculations, nor the distance calculations.

The author has used the same measurement techniques as with the first paper. With markers applied at

known distances on the lane, and additional markers applied to the ball each 60 of rotation, multiple

shots have been simultaneously captured with the SenseModule and recorded on a digital camcorder.

For an average ball speed of 15 mph (22 fps), the ball travels about 9” per frame, more at the start, less

at the pins. The error margin is twice that value (the first and last video frames), so that the best error

margin is ±2.5% (or about 0.4 mph), and the error margin increases as the velocity increases. A similar

scenario exists when counting revolutions. For a rotation rate of 6 Hz (360 RPMs), the resolution is 72

degrees of rotation at 30 fps (or about 0.2 revolutions). Again, the error margin increases with

increasing RPMs. In either case, it is pointless to try to assess the instantaneous linear and angular

velocities without using some form of high-speed video camera, with at least 10 times the frame rate.

Recall that the REVMETRIX system is intended to provide the bowler with metrics useful for evaluating

their execution, provide information useful for evaluating the reaction of the bowling ball to the lane

condition, as well as provide insight into changing lane conditions.

As such, it is more important that the REVMETRIX system provide consistent, repeatable results, rather

than absolutely accurate results. Ideally, if the bowler executes their delivery the same way on two

different shots, and the ball responds identically to that stimulus, then the system should report similar

results. On the other hand, if the bowler executes consecutive shots with a 5% difference in release

RPMs between them, the system should report a 5% difference in release RPMs.

112

At some point, it will be necessary to verify the metrics that the REVMETRIX system produces. The

current options have changed little in the time since the author first addressed this problem a dozen

years ago:

 Contact the USBC to use their automated bowling robot (E.A.R.L.) to throw repeated shots (with

a bowling ball equipped with a SenseModule) at known linear and angular velocities, along with

predetermined axis turn and tilt angles [11].

 Contact Brunswick to obtain time on their "Throbot" machine, similar to USBC’s E.A.R.L. [12].

 Visit a CATS-instrumented facility and correlate the REVMETRIX analysis results against the CATS

findings [13].

5.7.2 Approach Characteristics

No attempt has been made to analyze the acceleration data that the SenseModule collects during the

bowler’s approach. Since the ball is not rotating during approach, that data should reveal the position of

the ball in the bowler’s stance, as well as the motion of the bowling ball as the bowler delivers the ball

to the lane. That approach data could reveal the speed of the bowler’s delivery, the relative height of

their back swing, and their possible release point above the lane. Extensive data collection and analysis

research, along with high speed video comparisons would be necessary in order to create a quantitative

analysis of the bowler’s approach characteristics. On the other hand, that data could be used to develop

a qualitative approach “signature” that could reveal the consistencies/inconsistencies in the bowler’s

approach, and the effects of changes that the bowler is attempting to make in their approach.

5.7.3 Release Characteristics

As part of the approach data, the SenseModule also captures the bowler’s release of the bowling ball.

Recall that it is during release that the bowler applies lift and turn to the ball, as well as applies the

impetus to loft the ball, and give the ball its initial linear and angular velocities. It is the release motion

that determines how the ball will react once it hits the lane. It should also be possible to quantify the

release motion and create a release “signature” for the bowler to inspect. This would also be helpful in

identifying variability in the bowler’s release, as well as to provide feedback into any adjustments they

might be attempting to make to their release. In addition, if it is possible to obtain the orientation of

the ball at the time of release, it would then be possible to identify the axis turn at release, which would

reveal the initial direction of rotation with respect to the lane (direction of travel).

5.7.4 Axis Tilt Angle

The phases and amplitudes of the separate 3-axis tilt responses should reveal the tilt of the axis of

rotation as the ball rolls down the lane. The tilt response traces a sinusoidal waveform with maximum

amplitude of ± 1 g. If the axis of rotation is tilted away from parallel with the lane surface, that

amplitude will drop in direct proportion to the sine of the angle of tilt. The 3-axis tilt response can be

used to reveal how the tilt of the ball’s rotational axis changes over time during the REACTION segment.

113

Section VI: Summary

The SenseModule developed for this paper is a prototype, believed to be the first of its kind (low cost,

low power, low mass, unobtrusive, autonomous operation). As such, this has been a project of broad

scope and reach. The SenseModule was first developed as a data collection platform in order to

discover the content and morphology of the waveforms it was intended to capture. It took several

iterations of hardware and embedded software before the SM achieved autonomous operation.

At that point, the process of collecting and analyzing data began, with most of the analysis performed

using MATLAB. Once the morphology of the raw acceleration data waveforms became apparent,

wavelet decomposition/reconstruction was identified as the best method for determining the

boundaries of the various morphological segments in the data. It was then possible to implement an

algorithm for automatically dividing the waveform into its constituent segments (APPROACH, LOFT,

REACTION, and IMPACT).

Each segment can be characterized by its frequency content and its shape (how the signal evolves over

time). Certain segments lend themselves to analysis by finite impulse response (FIR) filtering, others are

better viewed through the lens that Wavelet Theory provides, and yet others require a combination of

both techniques.

The APPROACH segment is best analyzed with wavelets, as it has a low-frequency, non-cyclical shape

that evolves from DC to perhaps a single 0.5 Hz cycle generated by the bowler’s arm swing, and

culminates in a sudden increase in angular velocity as the bowler applies lift and turn to the ball.

The LOFT segment immediately follows release and is also best analyzed with wavelets, as it is

dominated by flat DC content, along with one or more brief significant spikes that result from the ball

impacting the lane (and possibly bouncing) after being lofted during release. The DC portion of the LOFT

segment supplies an isolated view of the centripetal acceleration of the ball as the ball is rotating in free

fall during loft.

The REACTION segment commences once the ball remains in continuous contact with the lane, and is

dominated by a noisy sinusoidal frequency chirp superimposed upon a significant DC component

generated by the centripetal acceleration of the ball. The frequency chirp is the result of the tilt aspect

of the ADXL345, and gives a direct indication of the orientation of the SenseModule with respect to the

lane surface as the ball rolls down the lane. The REACTION segment is best analyzed using FIR

techniques to filter out the low frequency acceleration component and high frequency noise from the

tilt response. It is that filtering of the REACTION segment that allows us to extract the changing angular

velocity of the ball. The angular acceleration component can also be used for that same purpose.

The IMPACT segment begins with the ball’s initial encounter with the pins, and continues through the

ball falling off the end of the lane into the pit. This segment is characterized by a continued tilt response

imposed on a low frequency component, but with numerous significant spikes due to pin impacts, and

greater noise content, also due to the ball driving through the pins. Both the linear and angular

velocities of the ball slow down significantly and the segment terminates with a period of free fall (flat

114

response) as the ball falls into the pit. Analysis of the IMPACT segment requires both FIR and wavelet

techniques, due to its varied signal content.

Relying on an assumption of energy conservation, we developed automated algorithms that isolate the

angular velocity tilt response from the REACTION segment, and then used the angular acceleration

response of the LOFT segment to create a combined LOFT-REACTION instantaneous angular velocity

waveform. From there, we extracted the individual revolutions of the ball, and inferred the

instantaneous linear velocity from the changes in angular velocity using the efficient transfer of linear

kinetic energy to angular kinetic energy. Finding the instantaneous linear velocity required the

development of an iterative converging algorithm that compares the expected distance the ball

travelled with the distance that results from the linear velocity “guess” we had just calculated.

Having found the instantaneous linear velocity of the ball, it then became possible to deduce the

location of the ball with respect to the foul line, and thus the distance the ball was lofted. We could

then also locate each revolution with respect to the foul line, which then allowed us to establish the

break point of the ball. Finally, we were also able to derive the kinetic frictional force from the changes

in either the angular or linear velocities.

The author has taken great liberty in assuming that no energy is lost during the transfer of energy from

the ball’s translation to the ball’s rotation. The analysis algorithms presented here are just a first

attempt at showing what is ultimately possible from having collected the 3-axis accelerometer data from

a sensor positioned underneath a finger hole in a bowling ball.

The author has yet to resolve the discrepancy that arose between the angular velocity extracted from

the tilt response waveform and the corresponding angular velocity extracted from the isolated angular

acceleration component of the combined LOFT-IMPACT segment. The ADXL345’s response during the

LOFT segment is the result of the isolated centripetal acceleration and should lead directly to the

angular velocity of the ball. The peak-valley and valley-peak tilt response should also lead directly to the

angular velocity of the ball for each half-rotation. However, those results disagree by about 5%, and

that error seems to be out of line with the accuracy we should be able to expect from the system.

It must be stated that all of the waveforms used for development of the MATLAB segmentation,

extraction, and analysis algorithms have originated with the author's use of the SenseModule. As such,

data collection with the SenseModule across a wider range of bowlers and bowling styles is still

necessary, which will undoubtedly result in further development and refinement of the algorithms

presented in this paper. Eventually, formal testing must be conducted in order to verify and validate the

accuracy of the analysis algorithms.

Admittedly, there is much additional SenseModule refinement, raw data collection, waveform analysis,

and algorithm development that has yet to be accomplished, and objective verification and validation

must also be performed across the entire REVMETRIX system. However, the project, to this point, has

reached its goal of developing an autonomous, unobtrusive in situ bowling ball sensor module, coupled

with an automated analysis system that provides quantitative feedback to the bowler about their

execution, as well as the reaction of the ball once they have released it to the lane.

115

REFERENCES

[7]Books and Literature
[1] Hake, “A Performance Analysis System for the Sport of Bowling”, Computer Science Master’s

Paper, Penn State Harrisburg, May 2002

[2] Vint, "Bowling's Invisible Obstacle Course", Bowling Magazine, December/January 1993

[3] Fuss, Kong, and Tan, “The First Instrumented Bowling Ball”, Nanyang Tech University, March 2007

[4] Fuss, Khang, “Performance Analysis with an Instrumented Bowling Ball”, The Impact of

Technology on Sport II, Taylor and Francis, 2008

[5] Frohlich, “What Makes Bowling Balls Hook”, American Journal of Physics, Vol. 72, No. 9

[6] Talamo, “The Physics of Bowling Balls”, www.docshut.com, 2008

[7] King, Perkins, et al, “Bowling ball dynamics revealed by miniature wireless MEMs inertial

measurement unit”, ISEA 2011, No. 13, pp 95-104

[8] The Physics of Bowling, www.real-world-physics-problems.com, 2014

[9] Nave, HyperPhysics, Dept. of Physics and Astronomy, Georgia State University, 2014

[10] USBC Equipment Specifications Manual, www.bowl.com, March 2014

[11] USBC's E.A.R.L. Bowling Robot, USBC, 2014

[12] Brunswick's "Throbot" Bowling Robot, Brunswick Corporation, 2014

[13] C.A.T.S. - Computer Aided Tracking System, Kegel Training Center, 2005

[14] Moore, MATLAB for Engineers, 3rd Edition, Pearson, 2012

[15] Schilling and Harris, Fundamentals of Digital Signal Processing, Thomson, 2005

[16] Strang and Nguyen, Wavelets and Filter Banks , Wellesley-Cambridge Press, 1997

[17] Burrus, Gopinath, and Guo, Introduction to Wavelets and Wavelet Transforms, Prentice Hall, 1998

Software Packages
[18] PK51 Professional Developer’s Kit , Keil Software, February 2010

[19] Eagle PCB Software V5.0, Cadsoft USA, 2008

[20] MATLAB Student Version R2012a, The Mathworks, 2012

[21] MATLAB Signal Processing Toolbox, The Mathworks, 2012

[22] MATLAB Wavelet Toolbox, The Mathworks, 2012

Hardware Components
[23] C8051F92x-F93x Ultra Low-Power MCUs, Silicon Laboratories

[24] 24FC1025 128K x 8 Serial EEPROM, Microchip Technologies

[25] ADXL345 3-Axis ±16 g Digital Accelerometer, Analog Devices

[26] TSL13T Light-to-Voltage Converter, AMS Sensor Solutions

[27] Optek OP521 Phototransistor Datasheet, Optek Corporation

[28] Manganese Dioxide Lithium Batteries (CR series), Panasonic Corporation

[29] Si1141 Proximity and Ambient Light Sensor, Silicon Laboratories

Prototype Services
[30] Quick-Turn Prototype and Small Quantity PCBs, Advanced Circuits

[31] Quick-Turn Prototype and Small Quantity SMT Assembly, Advanced Assembly

http://www.docshut.com/
http://www.real-world-physics-problems.com/
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
http://www.bowl.com/Equipment_Specs/Equipment_Specs_Home/Information/
http://www.bowl.com/Equipment_Specs/Equipment_Specs_Home/E_A_R_L__the_Robot/
http://www.brunswickbowling.com/throbot/
http://www.bowlingdigital.com/bowl/node/179
http://www.keil.com/c51/pk51kit.asp
http://www.silabs.com/products/mcu/lowpower/Pages/C8051F92x-93x.aspx
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en024639
http://www.analog.com/en/mems-sensors/mems-accelerometers/adxl345/products/product.html
http://www.ams.com/eng/Products/Light-Sensors/Light-to-Voltage-Sensors/TSL13T
http://www.optekinc.com/datasheets/OP520-521.PDF
http://industrial.panasonic.com/www-cgi/jvcr21pz.cgi?E+BA+3+AAA4003+4++WW
http://www.silabs.com/products/sensors/infraredsensors/Pages/Si114x.aspx
http://www.4pcb.com/
http://www.aa-pcbassembly.com/index.htm

116

APPENDIX A: LANE LAYOUT AND AMBIENT LIGHT WAVEFORM

Pin Deck Light

Foul Line

Figure 41a: Lane Layout and Overhead Lighting

Release Point

(finger removed

from insert)

Impact with Lane

Sampled Light

Waveform

Pin Deck Light

Impact with Head Pin

Figure 41b: Ambient Light Waveform Figure 41: Lane Layout and Ambient Light Waveform

Foul Line

Pit

117

APPENDIX B: SMARTDOT AND SENSEMODULE LIGHT AND IMPACT COMPARISON
Figure 42 is a typical SMARTDOT module graph. The original SMARTDOT module from [1] collected ambient

light data (TSL251 LTV converter) and impacts (piezoelectric film). The SenseModule also collects

ambient light data (TSL13T LTV converter), along with 3-axis acceleration data, and Figure 43 is a typical

SenseModule graph, with impact locations added in red. Although the ambient light data was collected

16 years apart, using two separate module designs with similar LTV converters, but completely different

technologies for impact detection, the light and impact data are remarkably similar.

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

13.65 14.15 14.65 15.15 15.65 16.15 16.65

G
's

seconds

Ball Record: 00005
Result: X (pocket)

Time: 17:46:02 8-29-2010
Ts: 17.086 sec, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

0

50

100

150

200

0 0.5 1 1.5 2 2.5 3

Li
gh

t
Le

ve
l

seconds

Game 2, Frame 1
Result: X (pocket)
Date: 12-26-1994

Ts: 3.05 sec, Light Fs: 120.03 Hz

light

impacts

Figure 42: Typical Smartdot Ambient Light Waveform with Impacts

Figure 43: Typical SenseModule Ambient Light Waveform with Impacts

118

APPENDIX C: COMMODULE COMMUNICATION PROTOCOLS

ComModule Detection Protocol
A means for exchanging information with the SenseModule is required in order to program the module,

configure the module, and upload sensor data from the module. The TSL13 light-to-voltage converter

also serves as the receiver for the SM communication circuit. The sensor module receives serial

commands and data via the TSL13, and transmits serial responses via the transmit LED. The bowler will

initiate a communication sequence with the sensor module by placing the ComModule over the finger

hole, generally while the module is in standby mode. Thus, the act of placing the communication

module over the finger hole causes the module to go through the standard wake-up sequence. The

ComModule detection protocol is given in the following sequence of steps, which describes the timing

diagram shown in Figure 44.

A) The bowler places the ComModule over the finger hole containing the sensor module,

blocking ambient light from reaching the start-up circuit.

B) The minimum start-up dark-time is reached (nominally 500 ms), and the P enters reset.

C) The P exits reset and begins executing its self-configuration code.

D) As part of its embedded program, the P first “assumes” that it is receiving a

transmission from the CM. It applies power to the TSL13 through P0.6, and configures

comparator CP1 to detect positive edges (which are the leading edges of logic ‘0’ bits)

generated by the TSL13. The CP1+ input is P1.0 and the CP1- input is P1.1.

SLEEPMODE P RESET EXECUTING CODE 2) P Status

1) OP521 Light Level

4) P P0.7: TRX LED

P

A/N

C/D

5) P CP0 Output

C

C/D

3) P P0.6: TSL13 VDD

B C E A F G H I J K D

Figure 44: ComModule Detection Timing Diagram

119

E) After the P is configured, it transmits the “probe” character sequence, indicated by ‘P’

in line 4 of Figure 44. The detailed byte transmission timing diagram is given in Figure

46.

F) The P clears any transient interrupts generated at CP1 due to applying power to the

TSL13, and then enables the CP1 positive edge interrupt in order to detect the leading

edges of logic ‘0’ bits transmitted by the CM. The detailed byte reception timing

diagram is given in Figure 45.

G) At the conclusion of the probe transmission, the P switches to receive mode, and waits

for a command character sequence (‘C’ in line 5) from the CM.

H) If the command sequence starts within the allotted time (nominally 100 ms), the P

receives the command sequence. If the P does not detect a command sequence

within the allotted time, it issues the probe sequence up to two more times. If the

presence of the CM is not detected, the P switches to sampling mode.

I) At the end of the command (detected via a terminating character or a time out value),

the P checks the validity of the command through a checksum test. If the checksum is

valid, the P waits for the communications module to enter receive mode (typically one

character time).

J) The P then transmits an “ACK” (acknowledge) for a valid checksum, or a “NAK”

(negative acknowledge (invalid checksum), switches to receive mode, and waits for the

next transmission from the CM.

K) If the P received a valid command, communication then proceeds between the two

modules according to the specific command protocol. If an invalid command was

received, the P waits to receive the retransmission of the command.

120

Serial Reception Protocol (Infrared iRTZ UART)
The TSL13 light-to-voltage converter doubles as the infrared serial receiver. Its output pin is tied to P1.0,

configured as the positive (CP1+) input of comparator CP1, while the negative (CP1-) input is tied to a

voltage divider set to a level appropriate for detecting light pulses in a dark ambient environment. The

serial reception scheme utilizes a modified UART protocol, with one START bit, 8 DATA bits, and 1 STOP

bit. An inverted Return-To-Zero (iRTZ) format is used, with reception occurring under ambient dark

conditions, where each “space” (0 bit) is transmitted as a light pulse consisting of a rising edge, a

minimum duration (1 s), and a falling edge, while the absence of light is considered to be the “mark” (1

bit) level.

Two P resources are used to implement the byte reception function: comparator CP1 is configured as

the START bit detector and an auto-reload timer is configured as the bit slice timer (BST). The CP1

interrupt detects the leading (rising) edge of the START bit, and the BST interrupt signals the individual

bit slice times. Before the anticipated reception of each byte, the BST is halted, the BST interrupt is

disabled, the BST value is initialized to 1.5 bit times, while the BST auto-reload value is initialized to 1 bit

time. Thus, once the BST is enabled at the rising edge of the START bit, all BST interrupts occur in the

middle of their respective bit slice times. The BST performs the reception of bits.

By checking for bits in the middle of the bit time, the serial receiver can overcome differences between

the baud rate generators of the transmitter and the receiver due to temperature drift, calibration error,

and time-base resolution errors. This scheme will accommodate combined errors of up to 5% per bit

time – accumulating a 47.5% drift across the 9.5 bit times it takes to receive the 8 DATA bits and the

single STOP bit. The error margin can be increased to 6% per bit time if 2 STOP bit times are

guaranteed to be transmitted between bytes.

At each BST overflow, the BST ISR reads the CP1 rising edge flag. If the flag is set (1), then a rising edge

was detected during the preceding bit time, and a ‘0’ bit is placed at the corresponding position in the

serial byte being assembled. If no rising edge was detected, a 1 bit is placed in the serial byte bit

position. After 8 data bits have been received, the next BST overflow captures the STOP bit as a flag.

After the STOP bit time, the BST ISR disables the BST interrupt, and a flag is set to indicate that a byte

has been received. Any routine that processes the received byte can then check the validity of the STOP

bit.

Figure 45 presents the timing diagram for the serial reception scheme.

UART receiver settings:

START bit: 1

DATA bits: 8

PARITY bit: NONE

STOP bits: 2 (allows for additional inter-character process time)

BAUD rate: 28,800 kbaud, individual bit time = 34.72 s.

Data transfer rate: ~2500 bytes/sec (assuming 11 bit frame)

121

A) Before serial reception can begin, the P must supply power to the TSL13 via P0.6.

B) After the TSL13 output settles (~100 s), the P enables the CP1 rising edge interrupt. This

should occur in an ambient dark condition, as measured with the TSL13. The CP1 interrupt

remains enabled from point A to point D.

C) The first rising edge at CP1+ causes a CP1 interrupt – the rising edge of the START bit. The CP1

interrupt service routine (ISR) starts the BST and enables the BST ISR. The BST interrupt and

timer remain enabled from point C to point W.

D) The CP1 ISR disables the CP1 interrupt.

E) Even with the CP1 interrupt disabled, rising edges are still detected and the CP1 rising edge flag

continues to be set accordingly (points E, G, I, K, M, O, Q, S).

F) At each BST overflow, the BST ISR checks the CP1 rising edge flag and stores the appropriate

value (a ‘0’ bit if a rising edge occurred during the preceding bit time, and ‘1’ bit otherwise) in

the byte being assembled. This occurs for each of the 8 DATA bits at points F, H, J, L, N, P, R, and

T. The ISR also clears the CP1 rising edge flag for the next bit time.

U) After the 8 DATA bits have been collected, the next BST overflow is for STOP bit detection.

There should be no rising edge transition during this bit time.

V) The BST ISR sets the STOP bit flag – ‘1’ for a valid STOP bit (no CP1 rising edge), ‘0’ otherwise.

W) The BST ISR disables the BST interrupt, and sets a flag indicating that a byte has been received.

X) If another byte is anticipated, the process repeats from step B, otherwise, the P removes

power from the TSL13.

3) P P1.0: CP1+

5) Bit Slice (P Timer ISR)

0

1

2

3

4

5

6

7

S

4) Start Bit (P CP1 ISR)

2) Light Input @ TSL13

(IC3)

S

0

1

2

3

4

5

6

7

S

F H J L N P R T V

U C E G I K M O Q S W

D B A

X

1) P P0.6: TSL13 VDD

Figure 45: Serial Reception Timing Diagram

122

Serial Transmission Protocol (Infrared iRTZ UART)
Since the SenseModule can transmit the entire contents of its sample memory (128 kbytes) during one

request, it is beneficial for the SM to transmit at a much higher rate than it can receive. The ComModule

must then have an infrared reception circuit that can accommodate the faster SM transmission rate.

The serial transmission scheme utilizes the modified UART protocol given for the serial reception mode,

with one START bit, 8 DATA bits, and 2 STOP bits. An inverted Return-To-Zero (iRTZ) format is used, with

transmission occurring under ambient dark conditions, where each “space” (0 bit) is transmitted as a

light pulse consisting of a rising edge, a minimum duration (50% duty cycle), and a falling edge, while the

absence of light is considered to be the “mark”, or logic ‘1’, bit level. The light pulses are 50% of the bit

time, which reduces the overall current required during serial transmission.

A single P timer is used to implement the byte transmission function - an auto-reload timer configured

as the bit slice timer (BST). The BST triggers the start of each bit time. The BST ISR then outputs the

next bit. If it is a ‘0’, the ISR turns the transmit LED on, and then turns the LED off after a fixed delay

time. If the bit is a ‘1’, there is nothing to do, since the LED is already off.

Since the P does not have to contend with multiple tasks when it is transmitting data, the transmission

of serial data is accomplished with a simple “bit-banging” scheme, with the BST trigerring the bit times,

and the byte transmission routine simply waiting for the BST overflows. By utilizing an optimized “bit-

banging” technique, it is possible to implement a SenseModule transmission rate of up to 115.2 kbaud.

Figure 46 presents the timing diagram for the serial transmission mode.

UART transmitter settings:

START bit: 1

DATA bits: 8

PARITY bit: NONE

STOP bits: 2 (allows for additional inter-character process time)

BAUD rate: 28,800 to 115.3 kbaud, individual bit time = 8.68 s to 34.72 s.

Data transfer rate: ~2500 to ~10,000 bytes/sec (assuming 11 bit frame)

123

Figure 46: Serial Transmission Timing Diagram

A) SenseModule initiates transmission by passing the byte to be transmitted to the low-level

transmit routine, enabling the Bit Slice Timer (BST) overflow interrupt, preloading the BST to

immediately overflow, and then starting the BST. The BST ISR issues the START bit (a logic 0) by

turning on the the current source (IREF0) at P0.7.

B) After a fixed delay, the BST ISR terminates the START bit (returning to “dark”). The active duty

cycle of the transmit LED is 50% when issuing a light pulse, and is 0% when issuing a dark pulse.

C) At the next BST overflow, the BST ISR issues the first DATA bit (bit 0) – a light pulse for a logic 0,

or remains dark for a logic 1. DATA bits are issued at points C, E, G, I, K, M, O, and Q)

D) The BST ISR terminates a ‘0’ DATA bit by shutting off current to the transmit LED - points C, F, H,

J, L, N, P, and R).

R) The BST ISR that issues the last DATA bit also sets the BST for two consecutive bit times, which

will cause two STOP bits to be issued following termination of the last DATA bit, and the

expiration of the last DATA bit time – points R, S, and T.

U) At the next BST overflow, the BST ISR halts the BST timer, disables the BST, resets the transmit

variables for the next byte, and sets a flag to indicate that the data byte has been transmitted.

Note that the current drive (IREF0) for the transmit LED has already been turned off by this time.

1) Bit Slice (P Timer ISR)

0

1

2

3

4

5

6

7

S

S

S

B D F H J L N P R

A C E G I K M O Q S T U

124

APPENDIX D: TYPICAL MATLAB OUTPUT METRICS

Enter data set name ('mmddyy-nnnnnn'): '082910-00009'

 Light RELEASE detected at Light index 231, TS = 11.872192 secs

 All time stamps adjusted relative to Light RELEASE TS

 RELEASE impact at ADXL index 687, TS = 0.023420 secs

 All time stamps adjusted to ADXL RELEASE point

 PIN impact at ADXL index 1248, TS = 2.739363 secs

 Average ball speed = 14.934 mph (21.903 fps)

 LOFT impact 1 at ADXL index 729, TS = 0.205086 secs

 Approximate distance = 4.49 ft

 LOFT impact 2 at ADXL index 744, TS = 0.278331 secs

 Approximate distance = 6.10 ft

 Release angular velocity(FIR): 357.9 rpms

 Impact angular velocity(FIR): 423.7 rpms

 Total Revolutions(FIR): 15.0

 Average linear velocity: 14.93 mph

 Release linear velocity: 15.00 mph

 Impact linear velocity: 14.57 mph

 Loft Distance: 54 in (4.51 ft)

 Reaction Distance: 76 in (6.34 ft)

125

APPENDIX E: TYPICAL RAW DATA WAVEFORMS

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

9 10 11 12 13 14 15 16

G
's

seconds

Ball Record: 00002
Result: X (light pocket)

Time: 17:44:20 8-29-2010
Ts: 15.742 s, ADXL Fs: 204.876 Hz, Light Fs: 120.467 Hz

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5

G
's

seconds

Ball Record: 00003
Result: X (pocket)

Time: 17:45:05 8-29-2010
Ts: 14.279 s, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 47: Ball Record 00002 (typical waveform)

Figure 48: Ball Record 00003 (typical waveform)

126

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

3 4 5 6 7

G
's

seconds

Ball Record: 00004
Result: False Activation (ball return)

Time: 17:45:28 8-29-2010
Ts: 7.079 s, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis
 Y-axis
 Z-axis
 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

10 11 12 13 14 15 16 17 18

G
's

seconds

Ball Record: 00005
Result: X (pocket)

Time: 17:46:02 8-29-2010
Ts: 17.086 sec, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis
 Y-axis
 Z-axis
 Light

Figure 49: Ball Record 00004 (ball return activation)

Figure 50: Ball Record 00005 (typical waveform)

127

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

10 11 12 13 14 15 16 17

G
's

seconds

Ball Record: 00006
Result: X (pulled pocket)

Time: 17:46:49 8-29-2010
Ts: 16.600 s, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8 9 10 11 12 13 14 15

G
's

seconds

Ball Record: 00007
Result: 7-10 (light pocket)
Time: 17:47:38 8-29-2010

Ts: 14.891 s, ADXL Fs: 204.834 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 51: Ball Record 00006 (typical waveform)

Figure 52: Ball Record 00007 (typical waveform)

128

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5

G
's

seconds

Ball Record: 00008
Result: X (light pocket)

Time: 17:49:02 8-29-2010
Ts: 16.358 s, ADXL Fs: 204.792 Hz, Light Fs: 120.481 Hz

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

G
's

seconds

Ball Record: 00009
Result: 10-pin (light pocket)
Time: 17:49:53 8-29-2010

Ts: 15.015 sec, ADXL Fs: 204.792 Hz, Light Fs: 120.481 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 53: Ball Record 00008 (typical waveform)

Figure 54: Ball Record 00009 (typical waveform)

129

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

3 4 5 6 7

G
's

seconds

Ball Record: 00010
Result: False Activation (ball return)

Time: 17:50:17 8-29-2010
Ts: 6.837 sec, ADXL Fs: 204.792 Hz, Light Fs: 120.481 Hz

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

G
's

seconds

Ball Record: 00011
Result: 10 (light pocket)

Time: 17:51:21 8-29-2010
Ts: 15.016 s, ADXL Fs: 204.792 Hz, Light Fs: 120.467 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 55: Ball Record 00010 (ball return activation)

Figure 56: Ball Record 00011 (typical waveform)

130

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

9 10 11 12 13 14 15 16

G
's

seconds

Ball Record: 00012
Result: X (pocket)

Time: 17:53:00 8-29-2010
Total Sample Time: 15.748 sec
ADXL Sample Frequency: 204.792 Hz
Light Sample Frequency: 120.481 Hz

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5

G
's

seconds

Ball Record: 00013
Result: 2-4-5-8 (light)

Time: 17:53:49 8-29-2010
Ts: 18.191 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 58: Ball Record 00013 (typical waveform)

Figure 57: Ball Record 00012 (typical waveform)

131

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

G
's

seconds

Ball Record: 00014
Result: X (pocket)

Time: 17:55:31 8-29-2010
Ts: 15.260 s, ADXL Fs: 204.792 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8 9 10 11 12 13 14 15

G
's

seconds

Ball Record: 00015
Result: 4-7 (high)

Time: 17:56:13 8-29-2010
Ts: 15.018 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 60: Ball Record 00015 (typical waveform)

Figure 59: Ball Record 00014 (typical waveform)

132

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5

G
's

seconds

Ball Record: 00016
Result: X (pocket)

Time: 17:58:13 8-29-2010
Ts: 14.408 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

1.5 2 2.5 3 3.5 4 4.5 5 5.5

G
's

seconds

Ball Record: 00017
Result: False Activation (ball return)

Time: 17:58:37 8-29-2010
Ts: 5.495 s, ADXL Fs: 204.750 Hz, Light Fs: 120.438 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 62: Ball Record 00017 (ball return activation)

Figure 61: Ball Record 00016 (typical waveform)

133

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

G
's

seconds

Ball Record: 00019
Result: False Activation (ball return)

Time: 17:59:21 8-29-2010
Ts: 7.083 s, ADXL Fs: 204.750 Hz, Light Fs: 120.496 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 64: Ball Record 00019 (ball return activation)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

G
's

seconds

Ball Record: 00018
Result: X (light pocket)

Time: 17:58:55 8-29-2010
Ts: 15.508 s, ADXL Fs: 204.750 Hz, Light Fs: 120.467 Hz

 X-axis

 Y-axis

 Z-axis

 Light

Figure 63: Ball Record 00018 (typical waveform)

