

Mobile End Final Technical Report
Mobile Team: Kevin Tanzosh

YCAS Radio Telescope Project

Senior Software Design Project II, Fall 2022

Prof. Donald J. Hake II

York College of Pennsylvania

Commented [1]: This is an excellent "rough" draft,
well-organized, well-written, flows nicely,
comprehensive. It give me the sense that you have
gained a great deal of understanding of the overall
application, and it's inner workings. Very well done.

Please see my comments throughout the document -
just minor issues. Please address those for the Final
Tech Report.

2

Table of Contents

Abstract 3

Introduction 4

Background 6

Design 7

Admin Application 7

Home Screen 7

Login Screen 7

Status Screen 10

Weather Screen 11

Appointment Manager 11

Approval Dashboard 12

Connection Overview 13

Implementation

Admin Application 14

React Navigation 14

Firebase/ Notifications 15

TCP Protocol 15

Packages/ Dependencies 17

Future Work 19

Admin Application 19

TCP to API 19

Admin Request Stored 19

API Endpoints Point to Correct Database 20

Updating Package Dependency 20

Updating React Native 20

Live Photos of Radio Telescope 21

iOS Visual Bugs 21

References 22

https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.1h6n9oya1qoo
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.jyuyic85ov29
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.4or8z29qw2as
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.t59v1gm666jc
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.8rile5hdtzo2
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.8rile5hdtzo2
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.qvpag48rwtw4
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.wb0t21qa31qr
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.11g31pi174zq
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.11g31pi174zq
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.ca0vsanmkyr5
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.ca0vsanmkyr5
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.g5onj43sd8sb
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.g5onj43sd8sb
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.xek1vua7wg4w
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.xek1vua7wg4w
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.23rw1eh58yp4
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.ui82cakopnxk
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.ui82cakopnxk
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.pa04g74cowko
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.pa04g74cowko
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.cj5gbjxlemdq
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.wkgtoonuqsjt
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.bfw6tet1sous
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.bh5jvir4bf3h
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.txjwqs1qo3e4
https://docs.google.com/document/d/1RvnxGHOCuHzv6lbxo-2jJvuIpyUECtZFZeweIExJsyw/edit#heading=h.kwpgj67y7upz

3

Abstract

 The York County of Astronomical Society (YCAS) has partnered with the

Kinsley Engineering Center at York College to create a remotely accessible,

auto-locating, auto-tracking telescope so they can continue to pursue their

amateur astronomy. The telescope will be installed at YCAS observatory at John

C. Rudy County Park, and it is currently in the fifth year of its construction, and

the project has consisted of mechanical, electrical, computer engineers along

with computer science students.

The mobile application is an admin-only application which allows for

remote access of the telescope with the added ability to have notifications sent

directly to their phones. The application sends and receives information from

both the Control Room Application and Back End database, where it is able to

inform the Control room to move the telescope if all safety conditions are properly

met, and access the database’s results. It also has the ability to perform these

additional functions:

● Monitor the telescope’s status in real-time

● Operate it remotely

● Receive notifications on telescope health and sensors

● Check the health of the telescope from sensors in the ControlRoom App

● View local weather conditions from a weather station co-located with the

telescope

4

Introduction

Professor Hake at York College reached out to Kerry Smith, from the

YCAS, in January of 2017 to discuss the possibility of collaborating on a project

to bring a radio telescope to the YCAS observatory in John C. Rudy County Park.

This project is the culmination of work started by York College students as part of

their senior projects as mechanical, electrical, and computer engineers in the

summer and spring of 2018. In the fall and into the spring of 2018, Computer

Science students joined this effort to create software for the telescope. In the

spring of 2020, the Mobile Team was tasked with building onto the existing

AdminApp and creating a new application for public use. This effort was

successful, as good progress was made in the AdminApp, and all functionality

was completed in the new PublicApp.

In the fall of 2020, the Mobile Team was tasked with furthering the

development of the AdminApp. This development included updating the app to

function with the newest version of React Native, adding the necessary

components to stream audio to the speakers that will be positioned by the radio

telescope, encrypting the commands being sent from the Admin App to the

ControlRoom App via the Middleman Service (MS), and small changes to design.

Fall of 2021, due to the departure of the sole team member working on the

MobileApp in the Fall of 2020, and with no work performed on the MobileApp in

the Spring of 2021, there was no continuity between the outgoing team and the

5

team coming in the Fall of 2021. Due to those factors, the React Native

functionality of the app became deprecated to a point where more technical effort

would be needed to revive the app than start from scratch. The 2021-22 team

spoke with past members of the team, and Ed Nardo, a past mobile app team

member, and current React Native developer came on as a mentor for this year’s

team. The team was able to rebuild the basic app from previous years with

minimal working functionality. Implementing a custom TCP protocol was a major

implementation made to control the telescope. By the end of Fall 2021, the team

had a working cross-platform mobile application that was able to drive the

physical hardware.

Development has continued into the spring of 2022. Working off of the

previous semester, the team built a working application that fits all specifications

the YCAS admins had requested. The AdminApp has an intuitive user interface

that allows admins to log in to use APIs. AES-256 encrypted TCP packets are

sent to request the ControlRoom App move the telescope and return the status.

The MobileApp receives current data on the telescope statuses including push

notifications for any issues that may arise.

Now in fall of 2022, one new member has continued the development of

the mobile application, with Ed Nardo and previous member David McHugh

assisting when needed to maintain continuity. Upgrades to encryption and TCP

packets were made, plus the start of updating the API with more database

features began, and will continue on into the following semester.

6

Background

 The purpose of the AdminApp is to allow the York County Astronomical

Society’s administrators to remotely monitor and control the radio telescope

The AdminApp contains functionality for:

● Viewing current sensor statuses

● Overriding sensors for testing/ maintenance

● Executing ControlRoom App scripts remotely

● Moving the telescope to an absolute location

● Performing relative moves using a D-pad like device

● Viewing current weather conditions at the Control Room

● Delivering timely notifications for any issues from ControlRoom App

 The AdminApp is powered by React Native, a javascript framework used to

create cross-platform mobile applications that will work for both iOS and Android

devices[1], and open-source packages to enhance features. The AdminApp

utilizes APIs developed by previous members of the database team. The main

use for the APIs will be for gathering sensor data and token authentication. More

work on the backend will need to be made before appointments and user

approval becomes functional on the app. The AdminApp uses AES 256

Encrypted TCP connections to communicate efficiently with the ControlRoom

App to move the telescope and gather data.

7

Design

Admin Application

The AdminApp consists of multiple screens that are created using React

Native and React Native Paper primarily [10]. Each screen is a single-page class

structure screen, meaning that each contains:

● Constructor

● State variables

● Component lifecycle methods

● Render method containing HTML code, and a CSS styling section

Each page also utilizes React Native components to expand upon their

base structure and incorporate more complex elements for ease of organization

and interaction.

Login Screen

The Login Screen, as shown in Figure 1, is the first

page that is seen when the application is opened. On this

screen, there are input boxes for the user's email address

and password. These values are stored using React

Communities Async Storage package [12] after it is

validated by the user token API. The email, password, and

8

token are now properly stored together locally on the phone or each

admin. When admins reopen the app they will automatically be logged into

the system, and it will be stored even on this immediate relogin. The login

page also contains a stop button. This is a safety feature in case the admin

gets logged out unexpectedly and the telescope needs to be stopped.

Home Screen

The Home Screen, as shown in Figure 2, is where

users are directed automatically after logging in once. On

this screen, the health of the telescope can be seen with

the colored light at the top next to the “Status:” label,

where green means everything is healthy, yellow means

there is an unhealthy sensor, and red means there is an

error. There is currently a stock photo of a radio

telescope being shown, but this will be replaced with an

image of the YCAS telescope or a live image of the

telescope when the cameras are up and running. Placed on top of the

image are a few additional pieces of data, including the ambient outdoor

temperature at the radio telescope location, the current azimuth and

elevation positions of the telescope, the speed and direction of the wind,

and, if an appointment is currently running, the names associated with that

Figure 1: Login
Screen

9

appointment. All data, except for the appointments are gathered from TCP

Protocol Request, and updated on any new render.

The other main functions within the application are reached through

this page via various buttons. The “Stop Telescope” button, which issues a

request to the ControlRoom App to stop the movement of the telescope, is

shown in Figure 3.

The “Approve Users” button, takes the user to a screen to

approve/deny new users. The “Run Script” button, shows a page for script

selection as shown in Figure 3. Once a script is chosen, a pop-up is shown

asking for final confirmation before sending the command, as shown in

Figure 4. The script page also has a button to reset the MCU error bit,

Figure 2: Admin
application Home
Screen

Figure 3:
RunScripts
Page

Figure 4:
RunScript
s
Confirmati
on

10

located next to the STOP button. If green, the MCU error is fine, and will

not allow it to be reset. If red, the admin can flip the MCU bit, and it will

return to green when it is ok.

Below those buttons is a directional icon pad, which, when clicked,

directs the user to a separate page where they can adjust the azimuth and

elevation position, as shown in Figure 5. The user then uses a 4-direction

control pad to control the telescope movement. In the center of the pad,

the user can always stop the telescope. There is also

another button to reset the MCU error bit, with the same

functionality as

mentioned above. Additionally, the current Azimuth

and Elevation are received through TCP

communication, like the home page.

Status Screen

The status screen is shown when the user clicks

“Status” at the top of the home screen. They will then be

shown the overall health of the system with a series of

colored lights next to the names of different sensors, as

shown in Figure 6.

Figure 5:
Degree
Movement
Commands

Figure 6:
Status
Page

11

Weather Screen

When the user presses either the wind speed or

temperature on the home screen, they are taken to the

weather page shown in Figure 7. This displays basic

weather data gathered from the radio telescope weather

station. This information is passed via an API call which

gets the most recent information from the database.

Appointment Manager

When the user taps on the name of the user with a

current appointment running on the home screen, they are

directed to the appointment manager screen. There are

three tabs, one for current appointments, one for future

appointments, and one for past appointments. This is

shown in Figure 8, where the “Previous”

appointments tab is chosen.

Figure 7:
Weather
Screen

Figure 8:
Appointme
nt
Manager

12

Approval Dashboard

The Approval Dashboard is reached by pressing “Approve Users” on

the home screen. This is a place where admins can approve or deny new

users, as shown below in Figures 9 and 10.

Figure 9:
User
Approval

Figure 10:
Deny User
Page

13

Connection Overview

Figure 11:
Connection
Overview

14

Implementation

Admin Application

React Navigation

 React Navigation is used in both applications to navigate between

the different screens. React Native doesn't have a built-in idea of a global

history stack like a web browser does -- this is where React Navigation

comes in. React Navigation's stack navigator provides a way for the app to

transition between screens and manage navigation history. If the app uses

only one stack navigator, then it is conceptually similar to how a web

browser handles navigation state - the app pushes and pops items from

the navigation stack as users interact with it, and this results in the user

seeing different screens. A key difference between how this works in a

web browser and in React Navigation is that React Navigation's stack

navigator provides the gestures and animations that one would expect on

Android and iOS when navigating between routes in the stack[4]. React

Navigation lives in “props”, small code fragments that can be reused, and

can be referred to by referencing the prop file. Navigating to a screen is

built into React Native.

15

Firebase/ Notifications

Firebase is a collection of services for mobile apps, web pages, and

Unity applications that offers features like hosting, storage, and cloud

messaging[5]. Firebase is primarily used to implement push notifications to

the admin.

 The Mobile Team is utilizing the cloud messaging API for Firebase,

so any device registered with the Firebase admin topic will receive a push

notification in the case of an emergency. Each device is added to the topic

of “admin” when the user logs in and is removed from the topic when the

admin logs out. While subscribed to the topic “admin”, those phones will

receive any notification pushed via Control Room to this specific topic.

Currently, on the ControlRoom App, the push notification is called with a

header and body to send. That information is sent using Firebase Admin

dotNet [11]. This allows the use of the Google Firebase APIs from C#

without much hassle. A test notification button was also added to the

Control Rooms' appointment page, this page will be revamped.

TCP Protocol

This protocol is also explained in the final tech report for Control

Room [9] as this was a joint effort. The best place to find the most relevant

technical documentation is in the RemoteListener Documentation[7].

16

Through TCP in React Native, the AdminApp opens a TCP

connection based on the IP Address and Port of the ControlRoom App, in

the constants’ file. As long as port forwarding is enabled on the current

router and the ControlRoom App is running, the RemoteListener.cs class

will receive the connection. From there, an encrypted string is

concatenated by the MobileApp and sent to the ControlRoom App. The

ControlRoom App decrypts the string and parses it. Once parsed the

ControlRoom App will either begin the requested action or return an error.

The ControlRoom App will notify the MobileApp when a string has been

received, parsed/started, and completed or failed. The estimated time may

be sent back to the MobileApp if applicable. Once the action has been

completed or failed, the ControlRoom App will destroy the connection after

sending the success or failure message to the MobileApp.

For safety purposes, all connections run asynchronously, however

requests with the same priority cannot override each other. Only a

command with a higher priority that is parsed may override a lower priority

command. Pages that are opened on the MobileApp begin with a

command to receive the most current data on the telescope's position.

From there, this command will be sent roughly every minute as long as the

telescope isn't moving. Once the telescope is moving, the request time will

jump up to 5 seconds. If the MobileApp were to crash after sending a

movement command, the Control Room still processes the command,

17

since it handles all telescope movements. Once the MobileApp is

relaunched, all the current data will be updated again.

All Accepted Command Types

● A movement command

● A sensor initialization

request

● An ALL_STOP command

● A script command

● Requesting current position

data

● Overriding a sensor

● Homing routine

● Reset MCU Bit

All Return Types

● Success

● InvalidVersion

● InvalidCommandType

● InvalidCommandArgs

● MissingCommandArgs,

● InvalidScript

● InvalidRequestType

Packages/ Dependencies

React-native-paper

 React-native-paper is a cross-platform material design tool for React

Native. React paper is used in the admin app for buttons, lists, icons, and

more. This package allows the admin to change the UI to the client's

specifications.

React-native-community/slider

 This is a React Native component used to select a single value from

a range of values.The react-native-community/slider is an easy way to use

a slider bar to gather a decimal value from the user, used specifically in the

Degree Movement Page. React-native-paper does not have slider bars so

this was a necessary extension

https://callstack.github.io/react-native-paper/index.html
https://openbase.com/js/@react-native-community/slider

18

Asyncstorage with React Native

 Asyncstorage is a built-in, React Native package that is used to store

data locally on a mobile device; this offers the ability to store values within

a map-like format on an individual user's phone. This is used on the admin

app to store the user's email address and password locally. A login page

was added for API use and in order to ensure the users are remembered

their information is stored after login. This is pulled once the app is opened

and the admin automatically logs in.

Axios

 Axios is a package allowing API calls to be completed in a simplistic

manner. Axios is a Postman-like package for Javascript allowing the admin

app to simply call the backend APIs using the user's locally stored token.

React-native-tcp-socket

 React-native-tcp-socket is a simplistic way to send and receive

commands using TCP. The admin app control over the telescope is all

dependent on TPC commands, sent to the Control Room via the

RemoteListener Class. TCP requests are sent to the Control Room and

then await a response from the Control Room on whether the information

was received, the status of the action, or data acquisition.

CryptoJS

 JavaScript implementations of standard and secure cryptographic

algorithms. The Mobile App and Control Room use the AES-256

encryption format, using the cipher-block chaining (CBC) mode. The Key

and IV are stored asynchronously on the App and Control Room.

https://reactnative.dev/docs/asyncstorage
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/react-native-tcp-socket
https://cryptojs.gitbook.io/docs/

19

Future Work

Admin Application

TCP to API

 Currently APIs are used but not to the extent requested by the

clients. APIs need to be used for everything listed in the issue below. The

architecture is set up and ready but there will need to be minor changes

made. We need to rely on TCP less for information. This was started fall

2022, with weather data now being API based. See the following GitHub

issue where this is tracked:

https://github.com/YCPRadioTelescope/rtMobile_v2/issues/82.

Admin Requests Stored

 Admin requests via TCP are not currently stored anywhere meaning

it is lost once completed. Another table can be created to store admin

commands on the ControlRoom App. The admins’ email can be added to

the command they send. The ControlRoom App can parse and store this

data. It would be nice to have APIs so admins can view the most recent

requests on the app.

https://github.com/YCPRadioTelescope/rtMobile_v2/issues/75.

https://github.com/YCPRadioTelescope/rtMobile_v2/issues/82
https://github.com/YCPRadioTelescope/rtMobile_v2/issues/75

20

API Endpoints Point to Correct Database

Ensure that all endpoints are pointing to the correct database once

we have the functioning radio telescope and production database. APIs will

need to be pointed towards the production database. This will need to be

changed to point to the production database once it is installed in the park.

Along with this IP address, ports will need to be changed in order to create

TCP connections.

Updating Package Dependency

 Yarn packages, the libraries used within the mobile application ,will

need to be updated regularly (4-6 months). This was done this semester,

but must continue regularly. See the following GitHub issue to keep track

of when packages are updated:

https://github.com/YCPRadioTelescope/rtMobile_v2/issues/83.

 Updating React Native

Along with Package Dependencies, React Native should be updated

regularly, (4-6 months). Again, this was done this semester, and must be

continued. See the following GitHub issue to keep track of when React

Natice was upgraded:

https://github.com/YCPRadioTelescope/rtMobile_v2/issues/87

https://github.com/YCPRadioTelescope/rtMobile_v2/issues/83
https://github.com/YCPRadioTelescope/rtMobile_v2/issues/87

21

Live Photo of Radio Telescope

 YCAS admins have requested that the live feed of the telescope is

to be shown on the app. This may be unnecessary due to the camera

already having its own app.

iOS Visual Bugs

 Certain UIs need to be updated to keep a better overall look of the

mobile application for iOS devices. The status buttons currently move on

their own, the home screen format does not properly display everything in

an accessible manner, and the elevation label hits the slider for the direct

movement page.

22

References

[1](2020). React Native, Retrieved November 28th, 2020 from https://facebook.github.io/react-

native/

[2](2020). Node, Retrieved November 28th, 2020 from https://nodejs.org/en/

[3](2020). AWS, Retrieved November 28th, 2020 from https://docs.aws.amazon.com/

[4](2020). React Navigation, Retrieved November 28th, 2020 from https://reactnavigation.org/

[5](2020). Firebase, Retrieved November 28th, 2020 from https://Firebase.google.com/

[6](2020). Crashlytics, Retrieved December 5th, 2020 from

https://firebase.google.com/docs/crashlytics

[7](2021). Remote Listener Documentation from RemoteListener Documentation

[8](2021). Control Room Final Tech Report from Control Room Final Tech Report - Fall 2021

[9](2021). TCP for React Native, Retrieved December 9th, 2021 from

https://www.npmjs.com/package/react-native-tcp

[10](2021). React Native Paper, Retrieved December 9th, 2021 from

https://callstack.github.io/react-native-paper/

[11](2022). https://github.com/firebase/firebase-admin-dotnet

[12](2022). https://reactnative.dev/docs/asyncstorage

[13](2022). https://callstack.github.io/react-native-paper/index.html

[14](2022). https://openbase.com/js/@react-native-community/slider

[15](2022). https://www.npmjs.com/package/axios

[16](2022). https://www.npmjs.com/package/react-native-tcp-socket

[17](2022). https://cryptojs.gitbook.io/docs/

https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://nodejs.org/en/
https://docs.aws.amazon.com/
https://reactnavigation.org/
https://firebase.google.com/
https://firebase.google.com/docs/crashlytics
https://docs.google.com/document/d/16_HVjoNUsJ0Viq6EgDgaGzdX-fo2Y_0RmtDoi1egdQU/edit
https://docs.google.com/document/d/10RPAiB_wCfEqlzePWlvaZsp6BjeSuPRP_TsW9eVkqEU/edit?usp=sharing

