
Lab 12 – Connecting Processing and Arduino

Overview
In the previous lab we have examined how to connect various sensors to the Arduino using
Scratch. While Scratch enables us to make simple Arduino programs, it is limited to only
communicate with the Arduino itself. To expand the range of possible Arduino interactions, we
will access the Arduino directly from a Processing sketch. This will enable you to incorporate
animation, sound, and other visual elements with physical input or output.

Setup
Download the Arduino library (link) for Processing and the Lab 12 sketches (link).

To install the Arduino library, open the ArduinoLibrary.zip file and drag the Arduino folder into
your Libraries folder within Processing:

To install the sketches for today, open the Lab12Sketches.zip folder and drag all of the contents
into your Processing sketchbook.

https://github.com/ycpcs/fys100-fall2016/raw/gh-pages/labs/ArduinoLibrary.zip
https://github.com/ycpcs/fys100-fall2016/raw/gh-pages/labs/Lab12Sketches.zip

Part 1: Connecting to Your Arduino
When using the Arduino library in Processing you can directly communicate with the Arduino by
turning on/off pins and requesting different values. However, before you perform these
activities you must first establish a connection to the Arduino.

Load up sketch “Blink LED”. Examine the setup() loop of the sketch as shown in Figure 1.

Figure 1: Create an Arduino object and determine which port is connected

The first line Arduino arduino creates an Arduino object that we will talk to. The subsequent
lines print out the different serial ports on the computer. You must select the serial port that
your computer is actually connected. This can be challenging as the output is not human-

readaes an Arduino object that we will talk to. The subsequent lines print out the different
serial ports on the computer. You must select the serial port that your computer is actually
connected. The code will print out the list of available serial ports in the terminal below your
sketch. Figure 2 shows the list of ports available on my MAC. Yours will look different.

Figure 2: List of available serial ports

This can be challenging as the output is not human-readable. In general, you want to select the
“largest” port value. In this instance I would select Port 1. As you can see in the code below, I
selected port 3 on an earlier install. You will change the value 3 to whatever value is good for
your Arduino.

Figure 3: Selecting port 3 for my Arduino - yours will be different

Part 2: Blinking an LED
To use a pin on the Arduino that pin must be declared as either an INPUT or an OUTPUT. Input
pins bring information into the Arduino. Output pins produce some information. Most of your
pins will be output pins.

In this sketch will blink the onboard LED, much like you did in Scratch. To begin, we need to set
pin 13, which is connected to the LED, as an output. The line below in setup() performs this
operation.

Once we have set pin 13 to be an output, it can be used in draw() to blink the LED. Examine the
code below and note the similarities with your Scratch code. Instead of blocks, we have
individual lines of code.

Figure 4: Blinking an LED in Processing and in Scratch

Part 3: Reading in Data
Many of the parts in we have used require an Analog Input to read in data- the photocell,
pressure sensor…etc. Accessing this information is very similar in Processing. Load up the sketch
called “SimpleAnalogRead”.

In SimpleAnalogRead the setup loop should be the same as the others. If the serial port is
incorrect, please change the port value as you did in the beginning of the lab.

Examine the DRAW() loop shown below. This code reads in a value from Analog Input 0 and
stores that value in a variable called value. Value has a type called int which simply means that
it stores positive or negative integers.

Figure 5: Reading in a value from Analog Input 0

An equivalent Scratch version of this code would look Figure 6. Instead of using a single block to
read in the sensor and assign it, we are using a single statement in Processing.

Figure 6: Scratch equivalent of reading in and storing a value

Once the value has been read in, the Arduino can print out that value and display it in the
console. The code also includes a small delay to ensure we do not receive a wall of text in the
console. The instruction println stands for “Print Line” and will print out different variables in
the console.

Figure 7: Full loop requesting data from Analog Input 0 and printing that value to the console

When running, you should see output similar to the values below that show data coming
through the Arduino and into the console.

Figure 8: Printing data to the console

Part 4: Controlling a Servo
In Scratch we used special motor blocks to control the servo. In Processing we will write to the
servo directly to control its operation. In general, sending a value of 0 to the servo will cause it
to move counter clockwise and sending a value of 180 will cause it to move clockwise. A value
in the middle will cause it to stop. Currently, I used 92 to make the servo stop.

Load up the sketch called “Servo” and examine the DRAW() loop. The SETUP loop should be the
same as the previous sketches.

Just above the DRAW loop I used a variable to hold the pin that the servo is connected to. We
can technically use a digital pin on the Arduino, however I have restricted this to pin 3 which
also worked in Scratch.

Figure 9: Variable to hold the pin number of the servo

Having setup the pin, we can now cause the motor to rotate different directions and then stop.
Notice the different values that are used to cause the motor to spin different directions. Try out
different value to get different results.

Figure 10: Causing the motor to spin different directions using the servoWrite instruction

• Try change the servo values between 0 and 180 to see different behaviors

Part 5: Connecting Processing and Arduino – Range Finder
Now that you’ve had an introduction to working with an Arduino in Processing, it is now time to
connect the two. Load up the sketch called RangeFinder and wire the Range Finder to your
Arduino.

The setup() loop should be the same as before but the draw() loop is different. In this loop we
begin to mix Arduino and Processing instructions. Like before, we read in a value from the
sensor, but then use that value to make a simple animation.

Figure 11: Use the sensor value to draw an ellipse on the screen

Figure 11 shows code that reads the range finder result into a variable called “value” and then
coverts that value into another variable called “inches”. The new variable is the actual distance
measured by the range finder. Using that distance, an ellipse is drawn on the screen and the
distance is printed below it (code not shown in Figure 11).

• Try out different fill colors for your sketch
• Aim your range finder at different objects and see how “noisy” it is

Part 5: Connecting Processing and Arduino – RGB LED
Using your breadboard and the RGB LED, wire up your LED to the following pins:

• Red to Arduino Pin 3
• Green to Arduino Pin 5
• Blue to Arduino Pin 6
• wire up the long LED pin to Ground.

Once the wiring is complete, load up the sketch called “RGB_LED”. This sketch uses many
output pins and so there are many declarations of the outputs in the SETUP loop. As a short cut,
I have made variables that contain the pin number for each

Examine the code in the DRAW function shown below. This code sets a value for each LED
color. Just like in Scratch, we use the Analog Write function to set the intensity of the LED. Go
to www.colorpicker.cm and try manually creating different values and colors.

http://www.colorpicker.cm/

Figure 12: Manually setting the color of each LED (red, green, blue)

• Try out different color combinations to explore the LED

Part 6: Connecting Processing and Arduino – LED and the Mouse
In Part 5 we found that it is possible to manually control the LED color. While this is interesting,
it is quite boring to select a new color each time. Load up the sketch called “ColorWheel”.

In this sketch, Processing will display a color wheel that provides all variations of RGB colors.
Keep your LED installed on your Arduino and watch what happens when you click a particular
color. You should notice that your LED becomes the colors that you clicked on the screen.

Processing captures your mouse click and then determines what color you selected. Examine
the mouseMoved function to see how this works. Processing first captures your mouse click by
finding the mouseX and mouseY values and grabs the color of that pixel. Then, it breaks apart
the pixel into its different color values.

Figure 13: Pulling the color from an image

After each color has been extracted, those individual colors are sent to the LED. The blue and
green values are decreased slightly as they are very bright and overwhelm the red color.

Figure 14: Sending the colors to the LED

• Change the function from mouseClicked() to mouseMoved() and see how your sketch
behavior changes

Part 5: Connecting Processing and Arduino – Inputs and Outputs
The final part of this lab is to connect an input device (the photocell) and an output device (the
onboard LED) together. To do this, wire up the photocell as shown in the previous lab
documentation. Load up the sketch called “PhotoCellandLED”.

The first two lines of the sketch should be familiar as they are directly from the Analog Input
example. These two lines read in and print the sensor value.

However, the following lines show something different: an IF-ELSE statement.

Figure 15: IF-ELSE statements in Processing

An IF-ELSE statement is simply a way to make your program do one thing or another, but not
both. In this code, the program tests whether the sensor data stored in “value” is less than 300.
If so, the LED is turned on. Otherwise the LED is turned off.

• Change the “<” sign to a “>” sign and see the difference in behavior
• Change the “<” sign to “==” (two equals). What happens to your code when == is used?

Note: the == operator tests for equality.

